Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content

Advertisement

Log in

Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Wallin, E., & von Heijne, G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Science, 7, 1029–1038.

    Article  CAS  Google Scholar 

  2. von Heijne, G. (2007). The membrane protein universe: What’s out there and why bother? Journal of Internal Medicine, 261, 543–557.

    Article  Google Scholar 

  3. White, S. H. (2009). Biophysical dissection of membrane proteins. Nature, 459, 344–346.

    Article  CAS  Google Scholar 

  4. Lundstrom, K. (2006). Structural genomics for membrane proteins. Cellular and Molecular Life Sciences, 63, 2597–2607.

    Article  CAS  Google Scholar 

  5. Bill, R. M., Henderson, P. J., Iwata, S., Kunji, E. R., Michel, H., Neutze, R., et al. (2011). Overcoming barriers to membrane protein structure determination. Nature Biotechnology, 29, 335–340.

    Article  CAS  Google Scholar 

  6. Grisshammer, R., & Tate, C. G. (1995). Overexpression of integral membrane proteins for structural studies. Quarterly Reviews of Biophysics, 28, 315–422.

    Article  CAS  Google Scholar 

  7. Lacapere, J. J., Pebay-Peyroula, E., Neumann, J. M., & Etchebest, C. (2007). Determining membrane protein structures: Still a challenge! Trends in Biochemical Sciences, 32, 259–270.

    Article  CAS  Google Scholar 

  8. Kunji, E. R., Slotboom, D. J., & Poolman, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. Biochimica et Biophysica Acta, 1610, 97–108.

    Article  CAS  Google Scholar 

  9. Kunji, E. R., Chan, K. W., Slotboom, D. J., Floyd, S., O’Connor, R., & Monné, M. (2005). Eukaryotic membrane protein overproduction in Lactococcus lactis. Current Opinion in Biotechnology, 16, 546–551.

    Article  CAS  Google Scholar 

  10. Junge, F., Schneider, B., Reckel, S., Schwarz, D., Dötsch, V., & Bernhard, F. (2008). Large-scale production of functional membrane proteins. Cellular and Molecular Life Sciences, 65, 1729–1755.

    Article  CAS  Google Scholar 

  11. Pontes, D. S., de Azevedo, M. S., Chatel, J. M., Langella, P., Azevedo, V., & Miyoshi, A. (2011). Lactococcus lactis as a live vector: Heterologous protein production and DNA delivery systems. Protein Expression and Purification, 79, 165–175.

    Article  CAS  Google Scholar 

  12. Zhou, X. X., Li, W. F., Ma, G. X., & Pan, Y. J. (2006). The nisin-controlled gene expression system: Construction, application and improvements. Biotechnology Advances, 24, 285–295.

    Article  CAS  Google Scholar 

  13. Frelet-Barrand, A., Boutigny, S., Moyet, L., Deniaud, A., Seigneurin-Berny, D., Salvi, D., et al. (2010). Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins. PLoS ONE, 5, e8746.

    Article  Google Scholar 

  14. Bernaudat, F., Frelet-Barrand, A., Pochon, N., Dementin, S., Hivin, P., Boutigny, S., et al. (2011). Heterologous expression of membrane proteins: Choosing the appropriate host. PLoS ONE, 6, e29191.

    Article  CAS  Google Scholar 

  15. Bakari, S., André, F., Seigneurin-Berny, D., Delaforge, M., Rolland, N., & Frelet-Barrand, A. (2014). Lactococcus lactis, recent developments in functional expression of membrane proteins. In I. Mus-Veteau (Ed.), Membrane proteins production for structural analysis (pp. 107–132). New York: Springer.

    Google Scholar 

  16. Estabrook, R. W. (1996). The remarkable P450s: A historical overview of these versatile hemeprotein catalysts. FASEB Journal, 10, 202–204.

    CAS  Google Scholar 

  17. Testa, B. (2008). Biotransformation reactions and their enzymes. In C. G. Wermuth (Ed.), The practice of medicinal chemistry (3rd ed., pp. 655–673). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  18. Sono, M., Roach, M. P., Coulter, E. D., & Dawson, J. H. (1996). Heme-containing oxygenases. Chemical Reviews, 96, 2841–2888.

    Article  CAS  Google Scholar 

  19. Bernhardt, R. (2006). Cytochromes P450 as versatile biocatalysts. Journal of Biotechnology, 124, 128–145.

    Article  CAS  Google Scholar 

  20. Thummel, K. E., & Wilkinson, G. R. (1998). In vitro and in vivo drug interactions involving human CYP3A. Annual Review of Pharmacology and Toxicology, 38, 389–430.

    Article  CAS  Google Scholar 

  21. Hannemann, F., Bichet, A., Ewen, K. M., & Bernhardt, R. (2007). Cytochrome P450 systems—biological variations of electron transport chains. Biochimica et Biophysica Acta, 1770, 330–344.

    Article  CAS  Google Scholar 

  22. Estabrook, R. W., Franklin, M. R., Cohen, B., Shigamatzu, A., & Hildebrandt, A. G. (1971). Biochemical and genetic factors influencing drug metabolism. Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism, 20, 187–199.

    Article  CAS  Google Scholar 

  23. Isin, E. M., & Guengerich, F. P. (2006). Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4. Journal of Biological Chemistry, 281, 9127–9136.

    Article  CAS  Google Scholar 

  24. Denisov, I. G., Grinkova, Y. V., McLean, M. A., & Sligar, S. G. (2007). The one-electron autoxidation of human cytochrome P450 3A4. Journal of Biological Chemistry, 282, 26865–26873.

    Article  CAS  Google Scholar 

  25. Williams, P. A., Cosme, J., Vinkovic, D. M., Ward, A., Angove, H. C., Day, P. J., et al. (2004). Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science, 305, 683–686.

    Article  CAS  Google Scholar 

  26. Yano, J. K., Wester, M. R., Schoch, G. A., Griffin, K. J., Stout, C. D., & Johnson, E. F. (2004). The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. Journal of Biological Chemistry, 279, 38091–38094.

    Article  CAS  Google Scholar 

  27. Davydov, D. R., Davydova, N. Y., Sineva, E. V., & Halpert, J. R. (2015). Interactions among cytochromes P450 in microsomal membranes: Oligomerization of cytochromes P450 3A4, 3A5, and 2E1 and its functional consequences. Journal of Biological Chemistry, 290, 3850–3864.

    Article  CAS  Google Scholar 

  28. Oakley, A. J., Harnnoi, T., Udomsinprasert, R., Jirajaroenrat, K., Ketterman, A. J., & Wilce, M. C. (2001). The crystal structures of glutathione S-transferases isozymes 1-3 and 1-4 from Anopheles dirus species B. Protein Science, 10, 2176–2185.

    Article  CAS  Google Scholar 

  29. Jakobsson, P. J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., & Persson, B. (1999). Common structural features of MAPEG—a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Science, 8, 689–692.

    Article  CAS  Google Scholar 

  30. Morgenstern, R., Lundqvist, G., Andersson, G., Balk, L., & DePierre, J. W. (1984). The distribution of microsomal glutathione transferase among different organelles, different organs and different organisms. Biochemical Pharmacology, 33, 3609–3614.

    Article  CAS  Google Scholar 

  31. Morgenstern, R., Guthenberg, C., & DePierre, J. W. (1982). Microsomal glutathione S-transferase. Purification, initial characterization and demonstration that it is not identical to the cytosolic glutathione S-transferases A, B and C. European Journal of Biochemistry, 128, 243–248.

    Article  CAS  Google Scholar 

  32. McLellan, L. I., Wolf, C. R., & Hayes, J. D. (1989). Human microsomal glutathione S-transferase. Its involvement in the conjugation of hexachlorobuta-1,3-diene with glutathione. Biochemical Journal, 258, 87–93.

    Article  CAS  Google Scholar 

  33. Morgenstern, R., & DePierre, J. W. (1983). Microsomal glutathione transferase purification in inactivated form and further characterization of the activation process, substrate specificity and amino acid composition. European Journal of Biochemistry, 134, 591–597.

    Article  CAS  Google Scholar 

  34. Holm, P. J., Bhakat, P., Jegerschold, C., Gyobu, N., Mitsuoka, K., Fujiyoshi, Y., et al. (2006). Structural basis for detoxification and oxidative stress protection in membranes. Journal of Molecular Biology, 360, 934–945.

    Article  CAS  Google Scholar 

  35. Frelet-Barrand, A., Boutigny, S., Kunji, E. R., & Rolland, N. (2010). Membrane protein expression in Lactococcus lactis. In I. Mus-Vuteau (Ed.), Methods in molecular biology: Heterologous expression of membrane proteins (Vol. 601, pp. 67–85). New York: Springer, Humana.

    Chapter  Google Scholar 

  36. Holo, H., & Nes, I. F. (1989). High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Applied and Environment Microbiology, 55, 3119–3123.

    CAS  Google Scholar 

  37. Peyronneau, M. A., Delaforge, M., Riviere, R., Renaud, J. P., & Mansuy, D. (1994). High affinity of ergopeptides for cytochromes P450 3A. Importance of their peptide moiety for P450 recognition and hydroxylation of bromocriptine. European Journal of Biochemistry, 223, 947–956.

    Article  CAS  Google Scholar 

  38. Guengerich, F. P., Parikh, A., Johnson, E. F., Richardson, T. H., von Wachenfeldt, C., Cosme, J., et al. (1997). Heterologous expression of human drug-metabolizing enzymes. Drug Metabolism and Disposition, 25, 1234–1241.

    CAS  Google Scholar 

  39. Morgenstern, R. (2005). Microsomal glutathione transferase 1. Methods in Enzymology, 401, 136–146.

    Article  CAS  Google Scholar 

  40. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  41. Li, Y., Hugenholtz, J., Sybesma, W., Abee, T., & Molenaar, D. (2005). Using Lactococcus lactis for glutathione overproduction. Applied Microbiology and Biotechnology, 67, 83–90.

    Article  CAS  Google Scholar 

  42. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.

    CAS  Google Scholar 

  43. Baureder, M., & Hederstedt, L. (2013). Heme proteins in lactic acid bacteria. Advances in Microbial Physiology, 62, 1–43.

    Article  CAS  Google Scholar 

  44. Pophaly, S. D., Singh, R., Pophaly, S. D., Kaushik, J. K., & Tomar, S. K. (2012). Current status and emerging role of glutathione in food grade lactic acid bacteria. Microbial Cell Factories, 11, 114.

    Article  CAS  Google Scholar 

  45. Kok, J., van der Vossen, J. M., & Venema, G. (1984). Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Applied and Environment Microbiology, 48, 726–731.

    CAS  Google Scholar 

  46. de Vos, W. M., & Simons, G. F. M. (1994). Gene cloning and expression systems in Lactococci. In M. J. Gasson & W. M. de Vos (Eds.), Genetics and biotechnology of lactic acid bacteria (pp. 52–105). London: Blackie Academic and Professional.

    Chapter  Google Scholar 

  47. Geertsma, E. R., & Poolman, B. (2007). High-throughput cloning and expression in recalcitrant bacteria. Nature Methods, 4, 705–707.

    Article  CAS  Google Scholar 

  48. Hartley, J. L., Temple, G. F., & Brasch, M. A. (2000). DNA cloning using in vitro site-specific recombination. Genome Research, 10, 1788–1795.

    Article  CAS  Google Scholar 

  49. Terpe, K. (2003). Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 60, 523–533.

    Article  CAS  Google Scholar 

  50. Marreddy, R. K., Pinto, J. P., Wolters, J. C., Geertsma, E. R., Fusetti, F., Permentier, H. P., et al. (2011). The response of Lactococcus lactis to membrane protein production. PLoS ONE, 6, e24060.

    Article  CAS  Google Scholar 

  51. Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., & Delucas, L. J. (2007). His-tag impact on structure. Acta Crystallographica. Section D, Biological Crystallography, 63, 295–301.

    Article  CAS  Google Scholar 

  52. Schmidt, T. G., & Skerra, A. (1994). One-step affinity purification of bacterially produced proteins by means of the “Strep tag” and immobilized recombinant core streptavidin. Journal of Chromatography A, 676, 337–345.

    Article  CAS  Google Scholar 

  53. Schmidt, T. G., & Skerra, A. (2007). The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nature Protocols, 2, 1528–1535.

    Article  CAS  Google Scholar 

  54. Weinander, R., Mosialou, E., DeJong, J., Tu, C. P. D., Dypbukt, J., Bergman, T., et al. (1995). Heterologous expression of rat liver microsomal glutathione transferase in simian COS cells and Escherichia coli. Biochemical Journal, 311, 861–866.

    Article  CAS  Google Scholar 

  55. DeJong, J. L., Morgenstern, R., Jörnvall, H., DePierre, J. W., & Tu, C. P. D. (1988). Gene expression of rat and human microsomal glutathione S-transferases. Journal of Biological Chemistry, 263, 8430–8436.

    CAS  Google Scholar 

  56. Mifsud, J., Ravaud, S., Krammer, E. M., Chipot, C., Kunji, E. R., Pebay-Peyroula, E., et al. (2013). The substrate specificity of the human ADP/ATP carrier AAC1. Molecular Membrane Biology, 30, 160–168.

    Article  Google Scholar 

  57. Janvilisri, T., Venter, H., Shahi, S., Reuter, G., Balakrishnan, L., & van Veen, H. W. (2003). Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. Journal of Biological Chemistry, 278, 20645–20651.

    Article  CAS  Google Scholar 

  58. Pan, Y., Abd-Rashid, B. A., Ismail, Z., Ismail, R., Mak, J. W., & Ong, C. E. (2011). Heterologous expression of human cytochromes P450 2D6 and CYP3A4 in Escherichia coli and their functional characterization. Protein Journal, 30, 581–591.

    Article  CAS  Google Scholar 

  59. Zelasko, S., Palaria, A., & Das, A. (2013). Optimizations to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression systems. Protein Expression and Purification, 92, 77–87.

    Article  CAS  Google Scholar 

  60. Guengerich, F. P., & Parikh, A. (1997). Expression of drug-metabolizing enzymes. Current Opinion in Biotechnology, 8, 623–628.

    Article  CAS  Google Scholar 

  61. Peyronneau, M. A., Renaud, J. P., Truan, G., Urban, P., Pompon, D., & Mansuy, D. (1992). Optimization of yeast-expressed human liver cytochrome P450 3A4 catalytic activities by coexpressing NADPH-cytochrome P450 reductase and cytochrome b5. European Journal of Biochemistry, 207, 109–116.

    Article  CAS  Google Scholar 

  62. Otieno, M. A., & Anders, M. W. (1997). Stable transfection of LLC-PK1 cells with human microsomal glutathione S-transferase gene increases haloalkene glutathione S-conjugate formation and cytotoxicity. Biochemical Biophysical Research Communications, 234, 481–484.

    Article  CAS  Google Scholar 

  63. Wetterholm, A., Martinez Molina, D., Nordlund, P., Eshaghi, S., & Haeggström, J. Z. (2008). High-level expression, purification, and crystallization of recombinant rat leukotriene C(4) synthase from the yeast Pichia pastoris. Protein Expression and Purification, 60, 1–6.

    Article  CAS  Google Scholar 

  64. Ahmad, S., Niegowski, D., Wetterholm, A., Haeggström, J. Z., Morgenstern, R., & Rinaldo-Matthis, A. (2013). Catalytic characterization of human microsomal glutathione S-transferase 2: Identification of rate-limiting steps. Biochemistry, 52, 1755–1764.

    Article  CAS  Google Scholar 

  65. Herzig, S., Raemy, E., Montessuit, S., Veuthey, J. L., Zamboni, N., Westermann, B., et al. (2012). Identification and functional expression of the mitochondrial pyruvate carrier. Science, 337, 93–96.

    Article  CAS  Google Scholar 

  66. Zidovetzki, R., Rost, B., Armstrong, D. L., & Pecht, I. (2003). Transmembrane domains in the functions of Fc receptors. Biophysical Chemistry, 100, 555–575.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Denis Pompon (LISBP, Toulouse, France) for his gift of the pYEDP60-CYP3A4 plasmid, Ralf Morgenstern (IEM, Karolinska Institute, Sweden) for cDNA encoding rMGST1 and for fruitful exchanges, to Isabelle de Waziers (Inserm U775, Paris V, France) for CYP3A4-specific antibody, and to François Parcy (LPCV, CEA Grenoble, France) for pBS-RfA plasmid. We thank Ludovic Robillard for technical assistance and Elizabeth Kish-Perrin for linguistic revisions of the manuscript. This work has been supported by the Region Ile de France (DIM SeNt, PhD fellowship to SB AAP2010-3-10T6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Frelet-Barrand.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Human and Animal Rights Statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Sana Bakari and Mehdi Lembrouk have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakari, S., Lembrouk, M., Sourd, L. et al. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1. Mol Biotechnol 58, 299–310 (2016). https://doi.org/10.1007/s12033-016-9928-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-016-9928-z

Keywords