Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Estimation of the present status of the species based on the theoretical bounds of environmental noise intensity: An illustration through a big abundance data and simulation

  • Original Article
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Sibly et al. (2005) described that most species have a fundamental characteristic to follow the theta-logistic growth trait with the convex downward trend. The fundamental yardstick of this research work builds under the deterministic setup, whereas the involvement of the external noise in any growth system is inevitable. But, the involvement of external affairs in any species growth can not be well judged only through its density dependence; it requires a further assessment. So, we frame the theta-logistic model with the stochastic analog in two directions, i.e., the discrete and continuous setup. The analysis of the discrete stochastic model is manifested by the bifurcation analysis, which shows that the attainment of the chaotic regime enhances with the increase in noise intensity level. Although the role of chaos in species extinction is debatable, a literature survey suggests that chaos with stochasticity accelerates the extinction of species. Similarly, in the case of the continuous version, we performed a theoretical study on the stochastic theta-logistic model to provide a critical value of the noise intensity parameter. This threshold magnitude acts as the sustainability criterion of any species environmental tolerability. In this connection, we use the data of four major taxonomic groups, i.e., Bird, Insect, Mammal, and Fish, from the GPDD database and classifies the species based on environmental sensitivity. The highly sensitive species have a low tolerance level, associated with the small magnitude of environmental noise intensity parameter. Moreover, the simulation prediction model on these four taxonomic classes also shows that the overall extinction probability of the considered birds in our research work is almost negligible for the current time window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akçakaya HR (2000) Population viability analyses with demographically and spatially structured models. Ecol Bull 23–38

  • Alcock J, Burrage K (2004) A genetic estimation algorithm for parameters of stochastic ordinary differential equations. Comput Stat Data Anal 47(2):255–275

    Article  Google Scholar 

  • Allen J, Schaffer WM, Rosko D (1993) Chaos reduces species extinction by amplifying local population noise. Nature 364(6434):229–232

    Article  CAS  PubMed  Google Scholar 

  • Anderson D (2013) Introduction to stochastic processes with applications in the biosciences

  • Andrewartha H, Birch L (1984) The ecological web: more on the distribution and abundance of animals., (The Univeristy of Chicago Press: Chicago, IL.). The ecological web: More on the distribution and abundance of animals. The University of Chicago Press, Chicago, IL

  • Arditi R, Ginzburg LR (1989) Coupling in predator-prey dynamics: ratio-dependence. J Theor Biol 139(3):311–326

    Article  Google Scholar 

  • Armstrong JD, Bean CW, Wells A (2018) The Scottish invasion of pink Salmon in 2017. J Fish Biol 93(1):8–11

    Article  PubMed  Google Scholar 

  • Berryman A, Millstein J (1989) Are ecological systems chaotic–and if not, why not? Trends Ecol Evol 4(1):26–28

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick AR, Bandyopadhyay S, Rana S, Bhattacharya S (2016) A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers. Math Biosci 271:96–112

    Article  PubMed  Google Scholar 

  • Bhowmick AR, Saha B, Chattopadhyay J, Ray S, Bhattacharya S (2015) Cooperation in species: interplay of population regulation and extinction through global population dynamics database. Ecol Model 312:150–165

    Article  Google Scholar 

  • Bishwal J (2008) Parameter estimation in stochastic differential equations. Evol Appl

  • Boyce MS (1984) Restitution of r-and k-selection as a model of density-dependent natural selection. Annu Rev Ecol Syst 15:427–447

    Article  Google Scholar 

  • Boyce MS (1992) Population viability analysis. Annu Rev Ecol Syst 23(1):481–497

    Article  Google Scholar 

  • Brook BW, Lim L, Harden R, Frankham R (1997) Does population viability analysis software predict the behaviour of real populations? A retrospective study on the Lord Howe Island Woodhen Tricholimnas sylvestris (Sclater). Biol Cons 82(2):119–128

    Article  Google Scholar 

  • Brook BW, O’Grady JJ, Chapman AP, Burgman MA, Akcakaya HR, Frankham R (2000) Predictive accuracy of population viability analysis in conservation biology. Nature 404(6776):385–387

    Article  CAS  PubMed  Google Scholar 

  • Brouste A, Iacus SM (2013) Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package. Comput Statistics 28(4):1529–1547

    Article  Google Scholar 

  • Burgman MA, Ferson S, Akçakaya HR (1993) Risk assessment in conservation biology, vol 12. Springer Science & Business Media

  • Chakraborty B, Bhowmick AR, Chattopadhyay J, Bhattacharya S (2017) Physiological responses of fish under environmental stress and extension of growth (curve) models. Ecol Model 363:172–186

    Article  CAS  Google Scholar 

  • Charlesworth B et al (1994) Evolution in age-structured populations, vol 2. Cambridge University Press Cambridge

  • Clark F, Brook BW, Delean S, Reşit Akçakaya H, Bradshaw CJ (2010) The theta-logistic is unreliable for modelling most census data. Methods Ecol Evol 1(3):253–262

    Article  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press

  • Crone EE, Ellis MM, Morris WF, Stanley A, Bell T, Bierzychudek P, Ehrlén J, Kaye TN, Knight TM, Lesica P et al (2013) Ability of matrix models to explain the past and predict the future of plant populations. Conserv Biol 27(5):968–978

    Article  PubMed  Google Scholar 

  • Dacunha-Castelle D, Florens-Zmirou D (1986) Estimation of the coefficients of a diffusion from discrete observations. Stochastics: An International Journal of Probability and Stochastic Processes 19(4):263–284

  • Dennis B, Desharnais RA, Cushing JM, Henson SM, Costantino RF (2003) Can noise induce chaos? Oikos 102(2):329–339

    Article  Google Scholar 

  • Dennis B, Munholland PL, Scott JM (1991) Estimation of growth and extinction parameters for endangered species. Ecol Monogr 61(2):115–143

    Article  Google Scholar 

  • Desharnais R, Costantino RF (1983) Natural selection and density-dependent population growth. Genetics 105(4):1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohnal G (1987) On estimating the diffusion coefficient. J Appl Probab 105–114

  • Fagan WF, Meir E, Moore JL (1999) Variation thresholds for extinction and their implications for conservation strategies. Am Nat 154(5):510–520

    Article  PubMed  Google Scholar 

  • Fagan W, Meir E, Prendergast J, Folarin A, Kareiva P (2001) Characterizing vulnerability to extinction for 758 species. Ecol Lett 4:132–138

    Article  Google Scholar 

  • Fegraus EH, Andelman S, Jones MB, Schildhauer M (2005) Maximizing the value of ecological data with structured metadata: an introduction to Ecological Metadata Language (EML) and principles for metadata creation. Bull Ecol Soc Am 86(3):158–168

    Article  Google Scholar 

  • Florens-Zmirou D (1989) Approximate discrete-time schemes for statistics of diffusion processes. Statistics: A Journal of Theoretical and Applied Statistics 20(4):547–557

    Article  Google Scholar 

  • Foley P (1994) Predicting extinction times from environmental stochasticity and carrying capacity. Conserv Biol 8(1):124–137

    Article  Google Scholar 

  • Fox R, Harrower CA, Bell JR, Shortall CR, Middlebrook I, Wilson RJ (2019) Insect population trends and the IUCN red list process. J Insect Conserv 23(2):269–278

    Article  Google Scholar 

  • Fraser DJ (2008) How well can captive breeding programs conserve biodiversity? A review of Salmonids. Evol Appl 1(4):535–586

    Article  PubMed  PubMed Central  Google Scholar 

  • Fussmann GF, Ellner SP, Shertzer KW, Hairston NG Jr (2000) Crossing the HOPF bifurcation in a live predator-prey system. Science 290(5495):1358–1360

    Article  CAS  PubMed  Google Scholar 

  • Gallant R, Long JR (1997) Estimating stochastic daerential equations efficiently by minimum chi-squared. Biometrika 84(1):125–141

    Article  Google Scholar 

  • Golec J, Sathananthan S (2003) Stability analysis of a stochastic logistic model. Math Comput Model 38(5–6):585–593

    Article  Google Scholar 

  • Guidoum AC, Boukhetala K (2020) Sim.DiffProc: simulation of diffusion processes. https://cran.r-project.org/package=Sim.DiffProc. R package version 4.5

  • Heering TE Jr, Reed DH (2005) Modeling extinction: Density-dependent changes in the variance of population growth rates. General Article 50(3):183

    Google Scholar 

  • Henle K, Sarre S, Wiegand K (2004) The role of density regulation in extinction processes and population viability analysis. Biodivers Conserv 13(1):9–52

    Article  Google Scholar 

  • Huffaker C, Shea K, Herman S et al (1963) Experimental studies on predation: complex dispersion and levels of food in an Acarine predator-prey interaction. Hilgardia 34(9):305–330

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402(6760):407

    Article  Google Scholar 

  • Iacus SM (2016) SDE: Simulation and inference for stochastic differential equations. https://CRAN.R-project.org/package=sde. R package version 2.0.15

  • Iacus SM, Mercuri L, Rroji E (2017) Cogarch (p, q): simulation and inference with the Yuima package. J Stat Softw 80(4):1–49. https://doi.org/10.18637/jss.v080.i04

    Article  Google Scholar 

  • Johnson MT, Agrawal AA (2003) The ecological play of predator-prey dynamics in an evolutionary theatre. Trends Ecol Evol 18(11):549–551

    Article  Google Scholar 

  • Kessler M (1997) Estimation of an ergodic diffusion from discrete observations. Scand J Stat 24(2):211–229

    Article  Google Scholar 

  • Khasminskii R (2011) Stochastic stability of differential equations, vol 66. Springer Science & Business Media

  • Knape J, de Valpine P (2012) Are patterns of density dependence in the global population dynamics database driven by uncertainty about population abundance? Ecol Lett 15(1):17–23

    Article  PubMed  Google Scholar 

  • Kot M (2001) Elements of mathematical ecology. Cambridge University Press

  • Koutsikopoulos C, Lacroix N (1992) Distribution and abundance of sole (Solea solea (l.)) eggs and larvae in the bay of Biscay between 1986 and 1989. Neth J Sea Res29(1-3):81–91

  • Krebs CJ (1978)  Ecology: the experimental analysis of distribution and abundance

  • Kundu S, Dasgupta N, Chakraborty B, Paul A, Ray S, Bhattacharya S (2021) Growth acceleration is the key for identifying the most favorable food concentration of Artemia sp. Ecol Model 455

    Article  Google Scholar 

  • Kundu S, Mukherjee J, Yeasmin F, Basu S, Chattopadhyay J, Ray S, Bhattacharya S (2018) Growth profile of Chaetoceros sp. and its steady state behaviour with change in initial inoculum size: a modelling approach. Curr Sci115(12):2275–2286

  • Lacy RC (2000) Considering threats to the viability of small populations using individual-based models. Ecol Bull 39–51

  • Lande R (1987) Extinction thresholds in demographic models of territorial populations. Am Nat 130(4):624–635

    Article  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142(6):911–927

    Article  PubMed  Google Scholar 

  • Lande R, Engen S, Sæther BE (2009) An evolutionary maximum principle for density-dependent population dynamics in a fluctuating environment. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1523):1511–1518

    Article  Google Scholar 

  • Lele SR, Dennis B, Lutscher F (2007) Data cloning: easy maximum likelihood estimation for complex ecological models using Bayesian Markov chain Monte Carlo methods. Ecol Lett 10(7):551–563

    Article  PubMed  Google Scholar 

  • Li TY, Yorke JA (2004) Period three implies chaos. In: The Theory of Chaotic Attractors. Springer, pp 77–84

  • Loeschcke V, Seitz A (1991) Species conservation: a population-biological approach. Citeseer

  • Luckinbill LS (1973) Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology 54(6):1320–1327

    Article  Google Scholar 

  • Ludwig D (1999) Is it meaningful to estimate a probability of extinction? Ecology 80(1):298–310

    Article  Google Scholar 

  • MacArthur RH (1962) Some generalized theorems of natural selection. Proc Natl Acad Sci USA 48(11):1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy MA, Possingham HP, Day JR, Tyre A (2001) Testing the accuracy of population viability analysis. Conserv Biol 15(4):1030–1038

    Article  Google Scholar 

  • Méndez V, Llopis I, Campos D, Horsthemke W (2010) Extinction conditions for isolated populations affected by environmental stochasticity. Theor Popul Biol 77(4):250–256

    Article  PubMed  Google Scholar 

  • Münzbergová Z, Ehrlén J (2005) How best to collect demographic data for population viability analysis models. J Appl Ecol 42(6):1115–1120

    Article  Google Scholar 

  • NERC Centre for Population Biology IC (2010) The global population dynamics database

  • Nicholson AJ (1954) An outline of the dynamics of animal populations. Aust J Zool 2(1):9–65

    Article  Google Scholar 

  • Nicolau J (2004) Introduction to the estimation of stochastic differential equations based on discrete observations. In: Autumn School and International Conference, Stochastic Finance

  • Nicolau J (2002) A new technique for simulating the likelihood of stochastic differential equations. Economet J 5(1):91–103

    Article  Google Scholar 

  • Ozaki T (1992) A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Statistica Sinica 113–135

  • Pe’er G, Matsinos YG, Johst K, Franz KW, Turlure C, Radchuk V, Malinowska AH, Curtis JM, Naujokaitis-Lewis I, Wintle BA et al (2013) A protocol for better design, application, and communication of population viability analyses. Conserv Biol 27(4):644–656

    Article  PubMed  Google Scholar 

  • Pianka ER (1970) On r-and k-selection. Am Nat 104(940):592–597

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rana S, Bhowmick AR, Bhattacharya S (2014) Impact of prey refuge on a discrete time predator-prey system with Allee effect. Int J Bifurcation Chaos 24(09):1450106

    Article  Google Scholar 

  • Rast W, Kimmig SE, Giese L, Berger A (2020) Machine learning goes wild: using data from captive individuals to infer wildlife behaviours. PLoS ONE 15(5):e0227317

  • Reed JM, Murphy DD, Brussard PF (1998) Efficacy of population viability analysis. Wildl Soc Bull 244–251

  • Reynolds JD, Freckleton RP (2005) Population dynamics: growing to extremes. Science 309(5734):567–568

    Article  CAS  PubMed  Google Scholar 

  • Ritchie ME (1992) Chaotic dynamics in food-limited populations: implications for wildlife management. In: Wildlife 2001: Populations. Springer, pp 139–147

  • Rosenzweig ML (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171(3969):385–387

    Article  CAS  PubMed  Google Scholar 

  • Ross J (2009) A note on density dependence in population models. Ecol Model 220(23):3472–3474

    Article  Google Scholar 

  • Roughgarden J (1979) Theory of population genetics and evolutionary ecology: an introduction

  • Ruxton GD (1994) Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous regular cycles. Proc R Soc Lond B 256(1346):189–193

    Article  Google Scholar 

  • Sæther BE, Engen S, Islam A, McCleery R, Perrins C (1998) Environmental stochasticity and extinction risk in a population of a small songbird, the great tit. Am Nat 151(5):441–450

    Article  PubMed  Google Scholar 

  • Saha B, Bhowmick AR, Chattopadhyay J, Bhattacharya S (2013) On the evidence of an Allee effect in herring populations and consequences for population survival: a model-based study. Ecol Model 250:72–80

    Article  Google Scholar 

  • Sau A, Saha B, Bhattacharya S (2020) An extended stochastic Allee model with harvesting and the risk of extinction of the herring population. J Theor Biol 503

    Article  PubMed  Google Scholar 

  • Schiegg K, Walters JR, Priddy JA (2005) Testing a spatially explicit, individual-based model of red-cockaded woodpecker population dynamics. Ecol Appl 15(5):1495–1503

    Article  Google Scholar 

  • Schreiber SJ (2003) Allee effects, extinctions, and chaotic transients in simple population models. Theor Popul Biol 64(2):201–209

    Article  PubMed  Google Scholar 

  • Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31(2):131–134

    Article  Google Scholar 

  • Shoji I, Ozaki T (1998) Estimation for nonlinear stochastic differential equations by a local linearization method. Stoch Anal Appl 16(4):733–752

    Article  Google Scholar 

  • Sibly RM, Barker D, Denham MC, Hone J, Pagel M (2005) On the regulation of populations of mammals, birds, fish, and insects. Science 309(5734):607–610

    Article  CAS  PubMed  Google Scholar 

  • Sibly RM, Barker D, Hone J, Pagel M (2007) On the stability of populations of mammals, birds, fish and insects. Ecol Lett 10(10):970–976

    Article  PubMed  Google Scholar 

  • Sjögren-Gulve P, Hanski I (2000) Metapopulation viability analysis using occupancy models. Ecol Bull 53–71

  • Stephens P (2016) Population viability analysis. Oxford University Press

  • Taylor BL (1995) The reliability of using population viability analysis for risk classification of species. Conserv Biol 9(3):551–558

    Article  Google Scholar 

  • Thomas WR, Pomerantz MJ, Gilpin ME (1980) Chaos, asymmetric growth and group selection for dynamical stability. Ecology 61(6):1312–1320

    Article  Google Scholar 

  • Thunberg H (2001) Periodicity versus chaos in one-dimensional dynamics. SIAM Rev 43(1):3–30

    Article  Google Scholar 

  • Uchida M, Yoshida N (2005) AIC for ergodic diffusion processes from discrete observations. preprint MHF 12

  • Veilleux B (1979) An analysis of the predatory interaction between paramecium and didinium. J Anim Ecol 787–803

  • Waliszewski P, Konarski J (2005) A mystery of the Gompertz function. In: Fractals in biology and medicine. Springer, pp 277–286

  • Welch P, Benner K, Leaf B (2007) Calibration of assessment methods for Fraser River Sockeye Salmon (Oncorhynchus nerka) spawning populations (25,000 to 75,000) in the horsefly. Canada Department of Fisheries and Oceans, Vancouver. British Columbia

  • Yoshida N (1992) Estimation for diffusion processes from discrete observation. J Multivar Anal 41(2):220–242

    Article  Google Scholar 

Download references

Acknowledgements

The author Ayan Paul is thankful to the Department of Science and Technology, Government of India, i.e., DST-INSPIRE (Grant Number: IF180793), for supporting the fellowship. The author also acknowledges the important role of Prof. Susmita Sarkar for giving the opportunity to work on this project. We are also thankful to the learned reviewers for their valuable suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Ghosh, N. & Bhattacharya, S. Estimation of the present status of the species based on the theoretical bounds of environmental noise intensity: An illustration through a big abundance data and simulation. Theor Ecol 15, 245–266 (2022). https://doi.org/10.1007/s12080-022-00541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s12080-022-00541-1

Keywords