Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Induced Circular Dichroism of Methylene Blue in Self-Assembled Pullulan Nanoparticles

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study reports self-assembled pullulan nanoparticles (PUNPs) obtained by the diafiltration method after dissolving phthalic pullulan in dimethylformamide, which was prepared by esterification between the primary hydroxyl groups of the pullulan and carboxylic acids of phthalic anhydride. The morphologies of the PUNPs observed by transmission electron microscopy (TEM) were spherical shapes. The particle sizes of the PUNPs measured by dynamic light scattering (DLS) were around 75.3 nm with −49.32 mV zeta potential. The ordered structure of pullulan measured by circular dichroism (CD) spectroscopy and X-ray diffraction (XRD) was enhanced by the formation of self-assembled polymeric NPs. Methylene blue (MB) used in tissue imaging agent was loaded into PUNPs via ionic bonding of cationic MB and anionic PUNPs, the CD of MB was induced in the PUNPs in the range of 500–700 nm whose crossing point matched κmax in the UV region of MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Portney and M. Ozkan, Anal. Bioanal. Chem., 384, 620 (2006).

    Article  CAS  Google Scholar 

  2. R. A. Petros and J. M. DeSimone, Nat. Rev. Drug Discov., 9, 615 (2010).

    Article  CAS  Google Scholar 

  3. M. Elsabahy and K. L. Wooley, Chem. Soc. Rev., 41, 2545 (2012).

    Article  CAS  Google Scholar 

  4. M. S. Murahari and M. C. Yergeri, Curr. Pharm. Des., 19, 4622 (2013).

    Article  CAS  Google Scholar 

  5. W.-S. Kim, J.-Y. Lee, B. Singh, S. Maharjan, L. Hong, S.-M. Lee, L.-H. Cui, K.-J. Lee, G. Kim, C.-H. Yun, S.-K. Kang, Y.-J. Choi, and C.-S. Cho, Sci. Rep., 8, 5878 (2018).

    Article  Google Scholar 

  6. W. Im and H. S. Kim, Tissue Eng. Regen. Med., 16, 213 (2019).

    Article  Google Scholar 

  7. K. J. Kim, M. S. Choi, J. H. Shim, and J. W. Rhie, Tissue Eng. Regen. Med., 16, 395 (2019).

    Article  CAS  Google Scholar 

  8. S.-Y. Yoon, S.-K. Kang, H.-B. Lee, S.-H. Oh, W.-S. Kim, H.-S. Li, J.-D. Bok, C.-S. Cho, and Y.-J. Choi, Tissue Eng. Regen. Med., 17, 33 (2020).

    Article  CAS  Google Scholar 

  9. K.-W. Ko, Y.-I. Yoo, J. Y. Kim, B. Choi, S.-B. Park, W. Park, W.-K. Rhim, and D. K. Han, Tissue Eng. Regen. Med., 17, 155 (2020).

    Article  CAS  Google Scholar 

  10. C. G. Yang, G. K. Park, E. J. McDonald, and H. S. Choi, Tissue Eng. Regen. Med., 16, 433 (2019).

    Article  CAS  Google Scholar 

  11. J. S. Jung, D. Jo, G. Jo, and H. Hyun, Tissue Eng. Regen. Med., 16, 443 (2019).

    Article  Google Scholar 

  12. S. Pillarisetti, S. Uthaman, K. M. Huh, Y. S. Koh, S. Lee, and I.-K. Park, Tissue Eng. Regen. Med., 16, 451 (2019).

    Article  Google Scholar 

  13. T. Miyagawa, M. Yamamoto, R. Muraki, H. Onouchi, and E. Yashima, J. Am. Chem. Soc., 129, 3676 (2007).

    Article  CAS  Google Scholar 

  14. T. Nishimura, S. Shinoda, H. Tsukube, Chirality, 14, 555 (2002).

    Article  CAS  Google Scholar 

  15. N. Yoshida, H. Yamaguchi, and M. Higashi, J. Chem. Soc., Perkin Trans., 2, 2507 (1994).

    Article  Google Scholar 

  16. V. Buss, Angew. Chem. Int. Ed., 30, 869 (1991).

    Article  Google Scholar 

  17. D. Krois and U. H. Brinker, J. Am. Chem. Soc., 120, 11627 (1998).

    Article  CAS  Google Scholar 

  18. D. A. Lightner, J. K. Gawronska, and K. Gawronska, J. Am. Chem. Soc., 107, 2456 (1985).

    Article  CAS  Google Scholar 

  19. D. J. Owen, D. VanDerveer, and G. B. Schuster, J. Am. Chem. Soc., 120, 1705 (1998).

    Article  CAS  Google Scholar 

  20. T. W. Chung, B. J. Kim, S. Y. Park, T. Akaike, J. W. Nah, and C. S. Cho, Macromolecules, 33, 8921 (2000).

    Article  CAS  Google Scholar 

  21. T. W. Chung, J. W. Nah, T. Akaike, Y. H. Park, and C. S. Cho, Polymer, 41, 6415 (2000).

    Article  CAS  Google Scholar 

  22. J. Jo, M. Yamamoto, K. Matsumoto, T. Nakamura, and Y. Tabata, J. Nanosci. Nanotechnol., 6, 2853 (2006).

    Article  CAS  Google Scholar 

  23. Y. Tabata, Y. Matsui, K. Uno, Y. Sokawa, and Y. Ikada, J. Interferon Cytokine Res., 19, 287 (1999).

    Article  CAS  Google Scholar 

  24. I. Kanatani, T. Ikai, A. Okazaki, J.-I. Jo, M. Yamamoto, M. Imamura, A. Kanematsu, S. Yamamoto, N. Ito, O. Ogawa, and Y. Tabata, J. Control. Release, 116, 75 (2006).

    Article  CAS  Google Scholar 

  25. A. Matsui, E. Tanaka, H. S. Choi, V. Kianzad, S. Gioux, S. J. Lomnes, and J. V. Frangioni, Surgery, 148, 78 (2010).

    Article  Google Scholar 

  26. L. Hong, W.-S. Kim, S.-M. Lee, S.-K. Kang, Y.-J. Choi, and C.-S. Cho, Front. Microbiol., 10, 142 (2019).

    Article  Google Scholar 

  27. M.-K. Yoo, M.-Y. Park, S.-W. Lee, Y.-J. Choi, I.-K. Park, and C.-S. Cho, J. Nanosci. Nanotechnol., 10, 3551 (2010).

    Article  CAS  Google Scholar 

  28. X. Tao, Y. Xie, Q. Zhang, X. Qiu, L. Yuan, Y. Wen, M. Li, X. Yang, T. Tao, M. Xie, Y. Lv, Q. Wang, and X. Feng, Nanomaterials (Basel), 6, 165 (2016).

    Article  Google Scholar 

  29. H. Kono, N. Kondo, T. Isono, M. Ogata, and K. Hirabayashi, Int. J. Biol. Macromol., 154, 1382 (2019).

    Article  Google Scholar 

  30. D. B. Kony, W. Damm, S. Stoll, W. F. van Gunsteren, and P. H. Hunenberger, Biophys. J., 93, 442 (2007).

    Article  CAS  Google Scholar 

  31. M. Karmakar, M. Mahapatra, A. Dutta, P. K. Chattopadhyay, and N. R. Singha, Int. J. Biol. Macromol., 102, 438 (2017).

    Article  CAS  Google Scholar 

  32. E. R. Arndt and E. S. Stevens, Carbohydr. Res., 303, 73 (1997).

    Article  CAS  Google Scholar 

  33. A. Forget, J. Christensen, S. Lüdeke, E. Kohler, S. Tobias, M. Matloubi, R. Thomann, and V. P. Shastri, Proc. Natl. Acad. Sci. USA, 110, 12887 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. J.P. Kim at Seoul National University to providie MB in this study. Also, This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2020R1I1A1A01053275).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun-Joong Kim or Chong-Su Cho.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Hwang, S.K., Kim, C.G. et al. Induced Circular Dichroism of Methylene Blue in Self-Assembled Pullulan Nanoparticles. Macromol. Res. 28 (Suppl 1), 1198–1203 (2020). https://doi.org/10.1007/s13233-020-8173-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13233-020-8173-2

Keywords