Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

HPV18 oncoproteins driven expression of PKM2 reprograms HeLa cell metabolism to maintain aerobic glycolysis and viability

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

The molecular basis of human papillomavirus (HPV)-mediated cellular immortalization and malignant transformation has illustrated an indispensable role of viral E6/E7-oncoproteins. However, the impact of viral-oncoproteins on the metabolic phenotype of cancer cells remains ambiguous. We showed silencing of HPV18-encoded E6/E7-oncoprotein significantly reduced glucose consumption, lactate production, ATP level and viability. Silencing of HPV18-encoded E6/E7 in HeLa cells significantly down-regulated expression and activity of HK1, HK2, LDHA, and LDHB. Interestingly, there was an increased pyruvate kinase activity due to switch in expression from PKM2 isoform to PKM1. The switch in favor of alternatively spliced isoform PKM1, was regulated by viral-E6/E7-oncoprotein by inhibiting the c-Myc/hnRNP-axis. Further, the near absence of the PKM1 protein despite an adequate amount of PKM1 mRNA in HeLa cells was due to its proteasomal degradation. Our results suggests HPV18-encoded E6/E7 driven preferential expression of PKM2 is essential to support aerobic glycolysis and cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arbyn M, et al. Worldwide burden of cervical cancer in 2008. Ann Oncol. 2011;22(12):2675–86.

    Article  CAS  PubMed  Google Scholar 

  2. Arizmendi-Izazaga A, et al. Metabolic reprogramming in cancer: role of HPV 16 variants. Pathogens. 2021;10(3):347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carretero J, et al. Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene. 2007;26(11):1616–25.

    Article  CAS  PubMed  Google Scholar 

  4. Clower CV, et al. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A. 2010;107(5):1894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cortes-Cros M, et al. M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth. Proc Natl Acad Sci U S A. 2013;110(2):489–94.

    Article  CAS  PubMed  Google Scholar 

  6. Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009;15(21):6479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. David CJ, et al. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010;463(7279):364–8.

    Article  CAS  PubMed  Google Scholar 

  8. DeBerardinis RJ, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  9. de Martel C, et al. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141(4):664–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. de Villiers EM, et al. Classification of papillomaviruses. Virology. 2004;324(1):17–27.

    Article  PubMed  CAS  Google Scholar 

  11. Dupuy F, et al. LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer. Cancer Metab. 2013;1(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Duvel K, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Elstrom RL, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 2004;64(11):3892–9.

    Article  CAS  PubMed  Google Scholar 

  14. Faubert B, et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha. Proc Natl Acad Sci U S A. 2014;111(7):2554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta V, et al. Dominant negative mutations affect oligomerization of human pyruvate kinase M2 isozyme and promote cellular growth and polyploidy. J Biol Chem. 2010;285(22):16864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gupta V, Bamezai RN. Human pyruvate kinase M2: a multifunctional protein. Protein Sci. 2010;19(11):2031–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hatano Y, et al. Virus-driven carcinogenesis. Cancers (Basel). 2021;13(11):2625.

    Article  CAS  Google Scholar 

  18. Hezel AF, Bardeesy N. LKB1; linking cell structure and tumor suppression. Oncogene. 2008;27(55):6908–19.

    Article  CAS  PubMed  Google Scholar 

  19. Honegger A, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog. 2015;11(3):e1004712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hota SK, Bruneau BG. ATP-dependent chromatin remodeling during mammalian development. Development. 2016;143(16):2882–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Howie HL, Katzenellenbogen RA, Galloway DA. Papillomavirus E6 proteins. Virology. 2009;384(2):324–34.

    Article  CAS  PubMed  Google Scholar 

  22. Iqbal MA, et al. Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol Cancer. 2013;12:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iqbal MA, et al. Missense mutations in pyruvate kinase M2 promote cancer metabolism, oxidative endurance, anchorage independence, and tumor growth in a dominant negative manner. J Biol Chem. 2014;289(12):8098–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iqbal MA, et al. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 2014;588(16):2685–92.

    Article  CAS  PubMed  Google Scholar 

  25. Iqbal MA, Bamezai RN. Resveratrol inhibits cancer cell metabolism by down regulating pyruvate kinase M2 via inhibition of mammalian target of rapamycin. PLoS ONE. 2012;7(5):e36764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones DL, Thompson DA, Münger K. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology. 1997;239(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  27. Kim JW, et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol. 2004;24(13):5923–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim JW, et al. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007;27(21):7381–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krump NA, You J. Molecular mechanisms of viral oncogenesis in humans. Nat Rev Microbiol. 2018;16(11):684–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levy P, Bartosch B. Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene. 2016;35(32):4155–64.

    Article  CAS  PubMed  Google Scholar 

  31. Maehama T, et al. Selective down-regulation of human papillomavirus transcription by 2-deoxyglucose. Int J Cancer. 1998;76(5):639–46.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Ramirez I, et al. Regulation of cellular metabolism by high-risk human papillomaviruses. Int J Mol Sci. 2018;19(7):1839.

    Article  PubMed Central  CAS  Google Scholar 

  33. Mazurek S, et al. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J. 2001;356(Pt 1):247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43(7):969–80.

    Article  CAS  PubMed  Google Scholar 

  35. Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe. 2014;15(3):266–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10(8):550–60.

    Article  CAS  PubMed  Google Scholar 

  37. Munger K, et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001;20(54):7888–98.

    Article  CAS  PubMed  Google Scholar 

  38. Noch E, Khalili K. Oncogenic viruses and tumor glucose metabolism: like kids in a candy store. Mol Cancer Ther. 2012;11(1):14–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Osthus RC, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem. 2000;275(29):21797–800.

    Article  CAS  PubMed  Google Scholar 

  40. Pappa KI, Daskalakis G, Anagnou NP. Metabolic rewiring is associated with HPV-specific profiles in cervical cancer cell lines. Sci Rep. 2021;11(1):17718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peter M, et al. MYC activation associated with the integration of HPV DNA at the MYC locus in genital tumors. Oncogene. 2006;25(44):5985–93.

    Article  CAS  PubMed  Google Scholar 

  42. Prakasam G, et al. Pyruvate kinase M knockdown induced signaling via AMP-activated protein kinase promotes mitochondrial biogenesis, autophagy, and cancer cell survival. J Biol Chem. 2017;292:15561–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prakasam G et al. (2017) Encyclopedia of Signaling Molecules: Pyruvate kinase M2. Encyclopedia of Signaling Molecules, 1–11

  44. Prakasam G, et al. Posttranslational modifications of pyruvate kinase M2: tweaks that benefit cancer. Front Oncol. 2018;8:22.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sabatini ME, Chiocca S. Human papillomavirus as a driver of head and neck cancers. Br J Cancer. 2020;122(3):306–14.

    Article  PubMed  Google Scholar 

  46. Scheffner M, et al. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75(3):495–505.

    Article  CAS  PubMed  Google Scholar 

  47. Shim H, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997;94(13):6658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spangle JM, Munger K. The human papillomavirus type 16 E6 oncoprotein activates mTORC1 signaling and increases protein synthesis. J Virol. 2010;84(18):9398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stine ZE, et al. MYC, metabolism, and cancer. Cancer Discov. 2015;5(10):1024–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Strickland SW, Vande Pol S. The human papillomavirus 16 E7 oncoprotein attenuates AKT signaling to promote internal ribosome entry site-dependent translation and expression of c-MYC. J Virol. 2016;90(12):5611–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sun Q, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci U S A. 2011;108(10):4129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomas M, et al. Human papillomaviruses, cervical cancer and cell polarity. Oncogene. 2008;27(55):7018–30.

    Article  CAS  PubMed  Google Scholar 

  53. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13(3):195–203.

    Article  CAS  PubMed  Google Scholar 

  55. Veldman T, et al. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci U S A. 2003;100(14):8211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang YW, et al. HPV-18 E7 conjugates to c-Myc and mediates its transcriptional activity. Int J Biochem Cell Biol. 2007;39(2):402–12.

    Article  CAS  PubMed  Google Scholar 

  57. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  58. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zeng Q, et al. LKB1 inhibits HPV-associated cancer progression by targeting cellular metabolism. Oncogene. 2017;36(9):1245–55.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, et al. Expression and transcriptional profiling of the LKB1 tumor suppressor in cervical cancer cells. Gynecol Oncol. 2014;134(2):372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang L, et al. The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses. Mol Cancer. 2015;14:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zwerschke W, et al. Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci U S A. 1999;96(4):1291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by University Grant Commission (UGC), Government of India, the grant (F. No 17-4/2001 (NS/PE) provided to the National Centre of Applied Human Genetics (to RNKB). The work was also supported by Department of Biotechnology, Government of India under award number BT/RLF/Re-entry/23/2018 (to RKS). G.P. acknowledges UGC for providing meritorious science research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gopinath Prakasam or Rajnish Kumar Singh.

Ethics declarations

Conflict of interest

The author(s) declared no potential competing interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakasam, G., Iqbal, M.A., Srivastava, A. et al. HPV18 oncoproteins driven expression of PKM2 reprograms HeLa cell metabolism to maintain aerobic glycolysis and viability. VirusDis. 33, 223–235 (2022). https://doi.org/10.1007/s13337-022-00776-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13337-022-00776-w

Keywords