Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Impaired Fanconi anemia pathway causes DNA hypomethylation in human angiosarcomas

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Angiosarcomas (AS) is a rare soft tissue sarcomas with poor treatment options and a dismal prognosis. The abnormal DNA methylation pattern has been determined as the certain clinical relevance with different angiosarcoma subtypes. However, the profound mechanism is not clear. In present study, we studied thirty-six AS with or without chronic lymphedema, and reported that DNA damage was an important factor causing DNA methylation abnormality. Furthermore, we determined that the impaired Fanconi anemia (FA) pathway contributed to severe DNA damage in AS with chronic lymphedema. We also observed that the activated FANCD2 could facilitate DNMT1 recruitment on genomic DNA. Our study uncovers a novel regulatory mechanism of FA pathway on DNA methylation, and is a benefit to advanced understanding the pathogenesis of AS, as well as providing the potential therapeutic targets for AS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets and supporting materials generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ. Angiosarcoma. Lancet Oncol. 2010;11:983–91.

    Article  Google Scholar 

  2. Florou V, Wilky BA. Current and future directions for angiosarcoma therapy. Curr Treat Options Oncol. 2018;19:14.

    Article  Google Scholar 

  3. Sturm EC, Marasco IS, Katz SC. Multidisciplinary management of angiosarcoma—a review. J Surg Res. 2021;257:213–20.

    Article  CAS  Google Scholar 

  4. Harris E, Barry M, Kell MR. Meta-analysis to determine if surgical resection of the primary tumor in the setting of stage IV breast cancer impacts on survival. Ann Surg Oncol. 2013;20:2828–34.

    Article  Google Scholar 

  5. Agale SV, Khan WA, Chawlani K. Chronic lymphedema of filarial origin: a very rare etiology of cutaneous lymphangiosarcoma. Indian J Dermatol. 2013;58:71–3.

    Article  Google Scholar 

  6. Budd GT. Management of angiosarcoma. Curr Oncol Rep. 2002;4:515–9.

    Article  Google Scholar 

  7. Chan JY, Lim JQ, Yeong J, et al. Multiomic analysis and immunoprofiling reveal distinct subtypes of human angiosarcoma. J Clin Invest. 2020;130:5833–46.

    Article  CAS  Google Scholar 

  8. Weidema ME, van de Geer E, Koelsche C, et al. DNA methylation profiling identifies distinct clusters in angiosarcomas. Clin Cancer Res: Off J Am Assoc Cancer Res. 2020;26:93–100.

    Article  CAS  Google Scholar 

  9. Roy S. Impact of UV radiation on genome stability and human health. Adv Exp Med Biol. 2017;996:207–19.

    Article  CAS  Google Scholar 

  10. Ikehata H, Ono T. The mechanisms of UV mutagenesis. J Radiat Res. 2011;52:115–25.

    Article  CAS  Google Scholar 

  11. Ollila J, Lappalainen I, Vihinen M. Sequence specificity in CpG mutation hotspots. FEBS Lett. 1996;396:119–22.

    Article  CAS  Google Scholar 

  12. Ma DK, Guo JU, Ming GL, Song H. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle. 2009;8:1526–31.

    Article  CAS  Google Scholar 

  13. Andersen NJ, Nickoloff BJ, Dykema KJ, et al. Pharmacologic inhibition of MEK signaling prevents growth of canine hemangiosarcoma. Mol Cancer Ther. 2013;12:1701–14.

    Article  CAS  Google Scholar 

  14. Meetei AR, de Winter JP, Medhurst AL, et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat Genet. 2003;35:165–70.

    Article  CAS  Google Scholar 

  15. Zhou S, Shen Y, Zheng M, et al. DNA methylation of METTL7A gene body regulates its transcriptional level in thyroid cancer. Oncotarget. 2017;8:34652–60.

    Article  Google Scholar 

  16. Shen Y, Zhao H, Zhang L, et al. The roles of DNA methylation and hydroxymethylation at short interspersed nuclear elements in the hypothalamic arcuate nucleus during puberty. Mol Ther Nucleic Acids. 2021;26:242–52.

    Article  CAS  Google Scholar 

  17. Zhou S, Shen Y, Zang S, Yin X, Li P. The epigenetic role of HTR1A antagonist in facilitating GnRH expression for pubertal initiation control. Mol Ther Nucleic Acids. 2021;25:198–206.

    Article  CAS  Google Scholar 

  18. Behjati S, Tarpey PS, Sheldon H, et al. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 2014;46:376–9.

    Article  CAS  Google Scholar 

  19. Sullivan HC, Edgar MA, Cohen C, Kovach CK, HooKim K, Reid MD. The utility of ERG, CD31 and CD34 in the cytological diagnosis of angiosarcoma: an analysis of 25 cases. J Clin Pathol. 2015;68:44–50.

    Article  Google Scholar 

  20. Ishizuka Y, Horimoto Y, Onagi H, Arakawa A, Saito M. Microsatellite-stable radiation-induced angiosarcoma after breast-conserving surgery: a case report. Case Rep Oncol. 2020;13:1275–80.

    Article  Google Scholar 

  21. Ma C, Hokutan K, Shen Y, et al. TFG-maintaining stability of overlooked FANCD2 confers early DNA-damage response. Aging. 2020;12:20268–84.

    Article  CAS  Google Scholar 

  22. Weihrauch M, Markwarth A, Lehnert G, Wittekind C, Wrbitzky R, Tannapfel A. Abnormalities of the ARF-p53 pathway in primary angiosarcomas of the liver. Hum Pathol. 2002;33:884–92.

    Article  CAS  Google Scholar 

  23. Lee R, Saardi KM, Schwartz RA. Lymphedema-related angiogenic tumors and other malignancies. Clin Dermatol. 2014;32:616–20.

    Article  Google Scholar 

  24. Rockson SG, Keeley V, Kilbreath S, Szuba A, Towers A. Cancer-associated secondary lymphoedema. Nat Rev Dis Primers. 2019;5:22.

    Article  Google Scholar 

  25. Sano M, Hirakawa S, Suzuki M, et al. Potential role of transforming growth factor-beta 1/Smad signaling in secondary lymphedema after cancer surgery. Cancer Sci. 2020;111:2620–34.

    Article  CAS  Google Scholar 

  26. Farzaliyev F, Hamacher R, Steinau Professor HU, Bertram S, Podleska LE. Secondary angiosarcoma: a fatal complication of chronic lymphedema. J Surg Oncol. 2020;121:85–90.

    PubMed  Google Scholar 

  27. Gaballah AH, Jensen CT, Palmquist S, et al. Angiosarcoma: clinical and imaging features from head to toe. Br J Radiol. 2017;90:20170039.

    Article  Google Scholar 

  28. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.

    Article  CAS  Google Scholar 

  29. Schwab RA, Nieminuszczy J, Shah F, et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol Cell. 2015;60:351–61.

    Article  CAS  Google Scholar 

  30. Shen Y, Lee YH, Panneerselvam J, Zhang J, Loo LW, Fei P. Mutated Fanconi anemia pathway in non-Fanconi anemia cancers. Oncotarget. 2015;6:20396–403.

    Article  Google Scholar 

  31. Zhu W, Dutta A. An ATR- and BRCA1-mediated Fanconi anemia pathway is required for activating the G2/M checkpoint and DNA damage repair upon rereplication. Mol Cell Biol. 2006;26:4601–11.

    Article  CAS  Google Scholar 

  32. Draga M, Madgett EB, Vandenberg CJ, et al. BRCA1 is required for maintenance of phospho-chk1 and G2/M arrest during DNA cross-link repair in DT40 cells. Mol Cell Biol. 2015;35:3829–40.

    Article  CAS  Google Scholar 

  33. Barciszewska AM, Giel-Pietraszuk M, Perrigue PM, Naskret-Barciszewska M. Total DNA methylation changes reflect random oxidative DNA damage in gliomas. Cells. 2019;8(9):1065.

    Article  CAS  Google Scholar 

  34. Scarpato R, Testi S, Colosimo V, et al. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. Mutat Res. 2020;783: 108295.

    Article  CAS  Google Scholar 

  35. Han B, Shen Y, Zhang P, et al. Overlooked FANCD2 variant encodes a promising, portent tumor suppressor, and alternative polyadenylation contributes to its expression. Oncotarget. 2017;8:22490–500.

    Article  Google Scholar 

  36. Takedachi A, Despras E, Scaglione S, et al. SLX4 interacts with RTEL1 to prevent transcription-mediated DNA replication perturbations. Nat Struct Mol Biol. 2020;27:438–49.

    Article  CAS  Google Scholar 

Download references

Funding

This project is supported by Natural Science Foundation of Henan Province (NO. 212300410390).

Author information

Authors and Affiliations

Authors

Contributions

Contributions: (I) conception and design: KNZ; (II) administrative support: KNZ; (III) provision of study materials or patients: KNZ; (IV) collection and assembly of data: SFS, FXG and LG; (V) data analysis and interpretation: KNZ; (VI) manuscript writing: KNZ; (VII) final approval of manuscript: all the authors.

Corresponding author

Correspondence to Kangning Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

All the participants understood and signed the informed consent. Signed informed consent and ethics committee documents of Ethics Committee of People’s Hospital of Henan Province (HNPH: E2022-230) were all provided to approve this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2022_736_MOESM1_ESM.tif

Supplementary figure 1. Characterization of AS and para-tumor primary cells of. Cell morphology of primary cells cultured in 3rd, 5th and 10th day (A). Primary AS cells identified by CD31 and CD34, red and blue peak represent the median fluorescence intensity of CD31 and CD34 in para-tumor and AS cells (B). Proportion of different cell cycle stages in AS and para-tumor primary cells by FACS assay (C). ASCL: angiosarcomas with chronic lymphedema; ASNCL: AS without chronic lymphedema; PT: para-tumor. Supplementary file1 (TIF 5311 KB)

Supplementary file2 (DOCX 24 KB)

Supplementary file3 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Sun, S., Guo, F. et al. Impaired Fanconi anemia pathway causes DNA hypomethylation in human angiosarcomas. Human Cell 35, 1602–1611 (2022). https://doi.org/10.1007/s13577-022-00736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13577-022-00736-y

Keywords