Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Advancements in semiconductor-based interface engineering strategies and characterization techniques for carrier dynamics in photoelectrochemical water splitting

光电化学水分解中基于半导体的界面工程策略和载 流子动力学表征技术的研究进展

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The application of solar energy has garnered significant attention for alleviating the energy crisis and addressing environmental issues. Photoelectrochemical (PEC) water splitting is a promising technology for converting renewable solar energy into chemical fuels. Improving the efficiency of energy conversion is undoubtedly crucial for PEC water splitting technology. One of the primary factors that affect PEC performance is the rate of separation and transfer of photogenerated carriers. In this review, some interface engineering strategies for enhancing the separation and transfer of photogenerated charge carriers in a photoanode are briefly presented. Furthermore, recent state-of-the-art advancements in quantifying photogenerated carrier dynamics are summarized. Our purpose is to help readers understand the latest developments in this field and provide a unique perspective for understanding dynamic hole transfer. Finally, a critical perspective is presented on the significant challenges and prospects for developing characterization methods aimed at studying the separation and transfer kinetics of photogenerated carrier at micro-nanoelectrode interfaces.

摘要

为了缓解能源危机和环境问题, 太阳能的应用受到了人们的广 泛关注. 光电化学水分解是一种极有前景的、可以将清洁可再生太阳 能转化为清洁燃料的技术. 提高能量转换效率无疑是光电化学水分解 技术的关键. 光生载流子的分离和转移速率是影响光电化学性能的主 要因素之一. 本综述简要介绍了一些界面工程策略以增强光阳极中光 生载流子的分离和传输. 此外, 总结了近期在原位量化光生载流子传输 动力学研究中的进展. 我们的目的是帮助读者了解这一领域的最新发 展, 并为理解动态空穴转移提供一个独特的视角. 最后, 我们对发展微 纳尺度电极界面光生载流子分离和转移动力学表征手段中面临的重大 挑战和未来前景进行了展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Zhong W, Shen S, He M, et al. The pulsed laser-induced Schottky junction via in-situ forming Cd clusters on CdS surfaces toward efficient visible light-driven photocatalytic hydrogen evolution. Appl Catal B-Environ, 2019, 258: 117967

    Article  CAS  Google Scholar 

  2. Miseki Y, Sayama K. Photocatalytic water splitting for solar hydrogen production using the carbonate effect and the Z-scheme reaction. Adv Energy Mater, 2019, 9: 1801294

    Article  Google Scholar 

  3. Zhang H, Zuo S, Qiu M, et al. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci Adv, 2020, 6: 9823

    Article  Google Scholar 

  4. Zhang P, Yu L, Lou XWD. Construction of heterostructured Fe2O3-TiO2 microdumbbells for photoelectrochemical water oxidation. Angew Chem Int Ed, 2018, 57: 15076–15080

    Article  CAS  Google Scholar 

  5. Wang M, Wang Z, Zhang B, et al. Enhancing the photoelectrochemical water oxidation reaction of BiVO4 photoanode by employing carbon spheres as electron reservoirs. ACS Catal, 2020, 10: 13031–13039

    Article  CAS  Google Scholar 

  6. Su J, Hisatomi T, Minegishi T, et al. Enhanced photoelectrochemical water oxidation from CdTe photoanodes annealed with CdCl2. Angew Chem Int Ed, 2020, 59: 13800–13806

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  CAS  PubMed  Google Scholar 

  8. Li CH, Huang CL, Chuah XF, et al. Ti-MOF derived TixFe1−xOy, shells boost Fe2O3 nanorod cores for enhanced photoelectrochemical water oxidation. Chem Eng J, 2019, 361: 660–670

    Article  CAS  Google Scholar 

  9. Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem, 2017, 1: 0003

    Article  CAS  Google Scholar 

  10. Kang J, Yoon KY, Lee JE, et al. Meso-pore generating P doping for efficient photoelectrochemical water splitting. Nano Energy, 2023, 107: 108090

    Article  CAS  Google Scholar 

  11. Xie G, Zhang K, Guo B, et al. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater, 2013, 25: 3820–3839

    Article  CAS  PubMed  Google Scholar 

  12. Sahu TK, Alam S, Bhowmick S, et al. Phosphorus nitride nano-dots as a versatile and metal-free support for efficient photoelectrochemical water oxidation. Chem Commun, 2021, 57: 6157–6160

    Article  CAS  Google Scholar 

  13. Wang P, Wang S, Gao L, et al. Achieving surface-sealing of hematite nanoarray photoanode with controllable metal-organic frameworks shell for enhanced photoelectrochemical water oxidation. J Catal, 2022, 413: 398–406

    Article  CAS  Google Scholar 

  14. Wang Q, Wu L, Zhang Z, et al. Elucidating the role of hypophosphite treatment in enhancing the performance of BiVO4 photoanode for photoelectrochemical water oxidation. ACS Appl Mater Interfaces, 2022, 14: 26642–26652

    Article  CAS  Google Scholar 

  15. Yu Z, Liu H, Zhu M, et al. Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small, 2021, 17: 1903378

    Article  CAS  Google Scholar 

  16. Park J, Lee TH, Kim C, et al. Hydrothermally obtained type-II heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting. Appl Catal B-Environ, 2021, 295: 120276

    Article  CAS  Google Scholar 

  17. Wang Q, Zong X, Tian L, et al. Fe2O3/FePO4/FeOOH ternary stepped energy band heterojunction photoanode with cascade-driven charge transfer and enhanced photoelectrochemical performance. ChemSusChem, 2022, 15: 202102377

    Article  Google Scholar 

  18. Shi X, Cai L, Choi IY, et al. Epitaxial growth of WO3 nanoneedles achieved using a facile flame surface treatment process engineering of hole transport and water oxidation reactivity. J Mater Chem A, 2018, 6: 19542–19546

    Article  CAS  Google Scholar 

  19. Liu C, Qiu Y, Wang F, et al. Design of core-shell-structured ZnO/ZnS hybridized with graphite-like C3N4 for highly efficient photoelectrochemical water splitting. Adv Mater Inter, 2017, 4: 1700681

    Article  Google Scholar 

  20. Song Y, Zhang X, Zhang Y, et al. Engineering MoOx/MXene hole transfer layers for unexpected boosting of photoelectrochemical water oxidation. Angew Chem Int Ed, 2022, 61: e202200946

    Article  CAS  Google Scholar 

  21. Shi X, Wu Q, Cui C. Improving WO3/SnO2 photoanode stability by inhibiting hydroxyl radicals with cobalt ions in strong acid. Sci China Mater, 2023, 66: 614–622

    Article  CAS  Google Scholar 

  22. Ahn HJ, Yoon KY, Sung M, et al. Utilizing a siloxane-modified organic semiconductor for photoelectrochemical water splitting. ACS Energy Lett, 2023, 8: 2595–2602

    Article  CAS  Google Scholar 

  23. Zhou M, Liu Z, Song Q, et al. Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co-Pi and Pt for charge management towards efficient photoelectrochemical water splitting. Appl Catal B-Environ, 2019, 244: 188–196

    Article  CAS  Google Scholar 

  24. Pirkarami A, Rasouli S, Ghasemi E. 3-D CdS@NiCo layered double hydroxide core-shell photoelectrocatalyst used for efficient overall water splitting. Appl Catal B-Environ, 2019, 241: 28–40

    Article  CAS  Google Scholar 

  25. Wang Y, Liu M, Hao S, et al. Synergistic defect- and interfacial-engineering of a Bi2S3-based nanoplate network for high-performance photoelectrochemical solar water splitting. J Mater Chem A, 2022, 10: 7830–7840

    Article  CAS  Google Scholar 

  26. Li Y, Takata T, Cha D, et al. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater, 2013, 25: 125–131

    Article  CAS  PubMed  Google Scholar 

  27. Ebaid M, Kang JH, Lim SH, et al. Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires. Nano Energy, 2015, 12: 215–223

    Article  CAS  Google Scholar 

  28. Wang Q, Zhang L, Li B, et al. 3D interconnected nanoporous Ta3N5 films for photoelectrochemical water splitting: thickness-controlled synthesis and insights into stability. Sci China Mater, 2021, 64: 1876–1888

    Article  CAS  Google Scholar 

  29. Jia J, Seitz LC, Benck JD, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun, 2016, 7: 13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim JH, Hansora D, Sharma P, et al. Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chem Soc Rev, 2019, 48: 1908–1971

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Liu G, Wang L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem Rev, 2019, 119: 5192–5247

    Article  CAS  PubMed  Google Scholar 

  32. Park J, Yoon KY, Kwak MJ, et al. Boosting charge transfer efficiency by nanofragment MXene for efficient photoelectrochemical water splitting of NiFe(OH)xCo-catalyzed hematite. ACS Appl Mater Interfaces, 2023, 15: 9341–9349

    Article  CAS  Google Scholar 

  33. Liu C, Zhang C, Yin G, et al. A three-dimensional branched TiO2 photoanode with an ultrathin Al2O3 passivation layer and a NiOOH cocatalyst toward photoelectrochemical water oxidation. ACS Appl Mater Interfaces, 2021, 13: 13301–13310

    Article  CAS  PubMed  Google Scholar 

  34. Lin J, Wang W, Li G. Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting. Adv Funct Mater, 2020, 30: 2005677

    Article  CAS  Google Scholar 

  35. Zhang M, Li F, Benetti D, et al. Ferroelectric polarization-enhanced charge separation in quantum dots sensitized semiconductor hybrid for photoelectrochemical hydrogen production. Nano Energy, 2021, 81: 105626

    Article  CAS  Google Scholar 

  36. Zakutayev A. Design of nitride semiconductors for solar energy conversion. J Mater Chem A, 2016, 4: 6742–6754

    Article  CAS  Google Scholar 

  37. Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110: 6503–6570

    Article  CAS  PubMed  Google Scholar 

  38. Tang R, Yin R, Zhou S, et al. Layered MoS2 coupled MOFs-derived dual-phase TiO2 for enhanced photoelectrochemical performance. J Mater Chem A, 2017, 5: 4962–4971

    Article  CAS  Google Scholar 

  39. Vo TG, Tai Y, Chiang CY. Novel hierarchical ferric phosphate/bismuth vanadate nanocactus for highly efficient and stable solar water splitting. Appl Catal B-Environ, 2019, 243: 657–666

    Article  CAS  Google Scholar 

  40. Wang T, Long X, Wei S, et al. Boosting hole transfer in the fluorine-doped hematite photoanode by depositing ultrathin amorphous FeOOH/CoOOH cocatalysts. ACS Appl Mater Interfaces, 2020, 12: 49705–49712

    Article  CAS  PubMed  Google Scholar 

  41. Ide Y, Ogino R, Sadakane M, et al. Effects of Au loading and CO2 addition on photocatalytic selective phenol oxidation over TiO2-supported Au nanoparticles. ChemCatChem, 2013, 5: 766–773

    Article  CAS  Google Scholar 

  42. Grätzel M. Photoelectrochemical cells. Nature, 2001, 414: 338–344

    Article  PubMed  Google Scholar 

  43. Yi SS, Zhang XB, Wulan BR, et al. Non-noble metals applied to solar water splitting. Energy Environ Sci, 2018, 11: 3128–3156

    Article  CAS  Google Scholar 

  44. Bae D, Seger B, Vesborg PCK, et al. Strategies for stable water splitting via protected photoelectrodes. Chem Soc Rev, 2017, 46: 1933–1954

    Article  CAS  PubMed  Google Scholar 

  45. Xiao M, Luo B, Wang Z, et al. Recent advances of metal-oxide photoanodes: engineering of charge separation and transportation toward efficient solar water splitting. Sol RRL, 2020, 4: 1900509

    Article  CAS  Google Scholar 

  46. Zhang X, Zhai P, Zhang Y, et al. Engineering single-atomic Ni-N4-O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J Am Chem Soc, 2021, 143: 20657–20669

    Article  CAS  PubMed  Google Scholar 

  47. Li K, Han J, Yang Y, et al. Simultaneous SO2 removal and CO2 reduction in a nano-BiVO4∣Cu-In nanoalloy photoelectrochemical cell. Chem Eng J, 2019, 355: 11–21

    Article  CAS  Google Scholar 

  48. Wang Y, Chen D, Zhang J, et al. Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting. Adv Funct Mater, 2022, 32: 2112738

    Article  CAS  Google Scholar 

  49. Ding C, Shi J, Wang Z, et al. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal, 2017, 7: 675–688

    Article  CAS  Google Scholar 

  50. Huang J, Zhang Y, Ding Y. Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation. ACS Catal, 2017, 7: 1841–1845

    Article  CAS  Google Scholar 

  51. Zhang M, Liu P, Tan H, et al. Engineering the heterogeneous interfaces of inverse opals to boost charge transfer for efficient solar water splitting. Sci China Mater, 2022, 65: 124–130

    Article  CAS  Google Scholar 

  52. Lv Z, Meng L, Cao F, et al. Wrapping BiVO4 with chlorophyll for greatly improved photoelectrochemical performance and stability. Sci China Mater, 2022, 65: 1512–1521

    Article  CAS  Google Scholar 

  53. Afroz K, Moniruddin M, Bakranov N, et al. A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. J Mater Chem A, 2018, 6: 21696–21718

    Article  CAS  Google Scholar 

  54. Zhu Y, Lv C, Yin Z, et al. A [001]-oriented Hittorf’s phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew Chem Int Ed, 2020, 59: 868–873

    Article  CAS  Google Scholar 

  55. Cai X, Du J, Zhong G, et al. Constructing a CeO2/ZnxCd1−xIn2S4 S-scheme hollow heterostructure for efficient photocatalytic H2 evolution. Acta Physico Chim Sin, 2023, 0: 2302017

    Article  Google Scholar 

  56. Yi SS, Wang ZY, Li HM, et al. Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting. Appl Catal B-Environ, 2021, 283: 119649

    Article  CAS  Google Scholar 

  57. Low J, Yu J, Jaroniec M, et al. Heterojunction photocatalysts. Adv Mater, 2017, 29: 1601694

    Article  Google Scholar 

  58. Cai H, Wang B, Xiong L, et al. Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution. Appl Catal B-Environ, 2019, 256: 117853

    Article  CAS  Google Scholar 

  59. Mao L, Deng H, Li M, et al. Manipulating interface built-in electric fields for efficient spatial charge separation in hematite-based photoanodes. Sci China Mater, 2023, 66: 603–613

    Article  CAS  Google Scholar 

  60. Gao H, Guo Y, Yu Z, et al. Incorporating p-phenylene as an electron-donating group into graphitic carbon nitride for efficient charge separation. ChemSusChem, 2019, 12: 4285–4292

    Article  CAS  PubMed  Google Scholar 

  61. Gao L, Li F, Hu H, et al. Dual modification of a BiVO4 photoanode for enhanced photoelectrochemical performance. ChemSusChem, 2018, 11: 2502–2509

    Article  CAS  PubMed  Google Scholar 

  62. Chai H, Gao L, Wang P, et al. In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial S-O for enhanced charge separation and transport in photoelectrochemical water oxidation. Appl Catal B-Environ, 2022, 305: 121011

    Article  CAS  Google Scholar 

  63. Zhang Y, Huang Y, Zhu SS, et al. Covalent S—O bonding enables enhanced photoelectrochemical performance of Cu2S/Fe2O3 heterojunction for water splitting. Small, 2021, 17: 2100320

    Article  CAS  Google Scholar 

  64. Zheng XL, Dinh CT, de Arquer FPG, et al. ZnFe2O4 leaves grown on TiO2 trees enhance photoelectrochemical water splitting. Small, 2016, 12: 3181–3188

    Article  CAS  PubMed  Google Scholar 

  65. Sun H, Dong C, Liu Q, et al. Conjugated acetylenic polymers grafted cuprous oxide as an efficient Z-scheme heterojunction for photoelectrochemical water reduction. Adv Mater, 2020, 32: 2002486

    Article  CAS  Google Scholar 

  66. Wu B, Sun T, Liu N, et al. Modulation of Z-scheme heterojunction interface between ultrathin C3N5 nanosheets and metal-organic framework for boosting photocatalysis. ACS Appl Mater Interfaces, 2022, 14: 26742–26751

    Article  CAS  Google Scholar 

  67. He X, Wu J, Li K, et al. Z-scheme 2D/2D heterojunction of ZnIn2S4/Ti-BPDC enhancing photocatalytic hydrogen evolution under visible light irradiation. Sci China Mater, 2023, 66: 3155–3164

    Article  CAS  Google Scholar 

  68. Cho KH, Sung YM. The formation of Z-scheme CdS/CdO nanorods on FTO substrates: The shell thickness effects on the flat band potentials. Nano Energy, 2017, 36: 176–185

    Article  CAS  Google Scholar 

  69. Wang R, Xie T, Zhang T, et al. Fabrication of FTO–BWO4–W–WO3 photoanode for improving photoelectrochemical performance: based on the Z-scheme electron transfer mechanism. J Mater Chem A, 2018, 6: 12956–12961

    Article  CAS  Google Scholar 

  70. Xu B, He P, Liu H, et al. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew Chem Int Ed, 2014, 53: 2339–2343

    Article  CAS  Google Scholar 

  71. Xu W, Tian W, Meng L, et al. Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv Energy Mater, 2021, 11: 2003500

    Article  CAS  Google Scholar 

  72. Wang Z, Ning X, Feng Y, et al. Insights into the enhanced photoelectrochemical performance through construction of the Z-scheme and type II heterojunctions. Anal Chem, 2022, 94: 8539–8546

    Article  CAS  PubMed  Google Scholar 

  73. Lee MG, Moon CW, Park H, et al. Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled Au nanoparticles. Small, 2017, 13: 1701644

    Article  Google Scholar 

  74. Mi Y, Wen L, Xu R, et al. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Adv Energy Mater, 2016, 6: 1501496

    Article  Google Scholar 

  75. Li L, Liu T, Zhou Z, et al. Photo-assisted decoration of Ag-Pt nanoparticles on Si photocathodes for reducing overpotential toward enhanced photoelectrochemical water splitting. Sci China Mater, 2022, 65: 3033–3042

    Article  CAS  Google Scholar 

  76. Cushing SK, Li J, Meng F, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc, 2012, 134: 15033–15041

    Article  CAS  PubMed  Google Scholar 

  77. Sun Y, Xu B, Shen Q, et al. Rapid and efficient self-assembly of Au@ZnO core–shell nanoparticle arrays with an enhanced and tunable plasmonic absorption for photoelectrochemical hydrogen generation. ACS Appl Mater Interfaces, 2017, 9: 31897–31906

    Article  CAS  PubMed  Google Scholar 

  78. Tang R, Zhou S, Li C, et al. Janus-structured Co-Ti3C2 MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation. Adv Funct Mater, 2020, 30: 2000637

    Article  CAS  Google Scholar 

  79. Zhou C, Wang S, Zhao Z, et al. A facet-dependent Schottky-junction electron shuttle in a BiVO4 {010}–Au–Cu2O Z-Scheme photocatalyst for efficient charge separation. Adv Funct Mater, 2018, 28: 1801214

    Article  Google Scholar 

  80. Wang S, Liu P, Meng C, et al. Boosting photoelectrochemical water splitting by Au@Pt modified ZnO/CdS with synergy of Au-S bonds and surface plasmon resonance. J Catal, 2022, 408: 196–205

    Article  CAS  Google Scholar 

  81. Ning X, Yin D, Fan Y, et al. Plasmon-enhanced charge separation and surface reactions based on Ag-loaded transition-metal hydroxide for photoelectrochemical water oxidation. Adv Energy Mater, 2021, 11: 2100405

    Article  CAS  Google Scholar 

  82. Wang X, Huang H, Wang J, et al. Suppression of point defects for band edge engineering in a semiconducting photocatalyst. J Phys Chem Lett, 2020, 11: 1708–1713

    Article  PubMed  Google Scholar 

  83. Gao Y, Wang J, Mo S, et al. Synthesis of high-quality wurtzite Cu2 ZnSn(S1−x,Sex)4 nanocrystals with non-toxic selenium precursor and the photoelectrochemical performance of ZnO NAs/CZTSSe heterojunction. Sol RRL, 2018, 2: 1800015

    Article  Google Scholar 

  84. Jeon TH, Moon G, Park H, et al. Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays. Nano Energy, 2017, 39: 211–218

    Article  CAS  Google Scholar 

  85. Samuel E, Joshi B, Kim MW, et al. Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting. Nano Energy, 2020, 72: 104648

    Article  CAS  Google Scholar 

  86. Yang Y, Niu S, Han D, et al. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv Energy Mater, 2017, 7: 1700555

    Article  Google Scholar 

  87. Long X, Gao L, Li F, et al. Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting. Appl Catal B-Environ, 2019, 257: 117813

    Article  CAS  Google Scholar 

  88. Meng L, Tian W, Wu F, et al. TiO2 ALD decorated CuO/BiVO4 p-n heterojunction for improved photoelectrochemical water splitting. J Mater Sci Tech, 2019, 35: 1740–1746

    Article  CAS  Google Scholar 

  89. Wang S, He T, Yun JH, et al. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv Funct Mater, 2018, 28: 1802685

    Article  Google Scholar 

  90. Sun Q, Cheng T, Liu Z, et al. A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl Catal B-Environ, 2020, 277: 119189

    Article  CAS  Google Scholar 

  91. Chen H, Wang S, Wu J, et al. Identifying dual functions of rGO in a BiVO4/rGO/NiFe-layered double hydroxide photoanode for efficient photoelectrochemical water splitting. J Mater Chem A, 2020, 8: 13231–13240

    Article  CAS  Google Scholar 

  92. Tilley SD, Schreier M, Azevedo J, et al. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv Funct Mater, 2014, 24: 303–311

    Article  CAS  Google Scholar 

  93. Ni J, Shi ZP, Wang X, et al. Recent development of low iridium electrocatalysts toward efficient water oxidation. J Electrochem, 2022, 28: 2214010

    Google Scholar 

  94. Zhong W, Lin Z, Feng S, et al. Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. Nanoscale, 2019, 11: 4407–4413

    Article  CAS  PubMed  Google Scholar 

  95. Zhou A, Guo WJ, Wang YQ, et al. The rapid preparation of efficient MoFeCo-based bifunctional electrocatalysts via joule heating for overall water splitting. J Electrochem, 2022, 28: 2214007

    Google Scholar 

  96. Chai H, Wang S, Wang X, et al. Modulation of the chemical microenvironment at the hematite-based photoanode interface with a covalent triazine framework for efficient photoelectrochemical water oxidation. ACS Catal, 2022, 12: 3700–3709

    Article  CAS  Google Scholar 

  97. Yin Z, Shi Y, Shen S. A n-Si/CoOx/Ni:CoOOH photoanode producing 600 mV photovoltage for efficient photoelectrochemical water splitting. Sci China Mater, 2022, 65: 3442–3451

    Article  CAS  Google Scholar 

  98. Wang J, Cui W, Liu Q, et al. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater, 2016, 28: 215–230

    Article  CAS  PubMed  Google Scholar 

  99. Bu Q, Liu X, Zhao Q, et al. Unveiling the influence of 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin on the photogenerated charge behavior and photoelectrochemical water oxidation of hematite photoanode. J Colloid Interface Sci, 2022, 626: 345–354

    Article  CAS  PubMed  Google Scholar 

  100. Zhu Y, Ren J, Yang X, et al. Interface engineering of 3D BiVO4 /Fe-based layered double hydroxide core/shell nanostructures for boosting photoelectrochemical water oxidation. J Mater Chem A, 2017, 5: 9952–9959

    Article  CAS  Google Scholar 

  101. Yue P, She H, Zhang L, et al. Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity. Appl Catal B-Environ, 2021, 286: 119875

    Article  CAS  Google Scholar 

  102. Yoon KY, Park J, Jung M, et al. NiFeOx decorated Ge-hematite/perovskite for an efficient water splitting system. Nat Commun, 2021, 12: 4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xie Z, Chen D, Zhai J, et al. Charge separation via synergy of homojunction and electrocatalyst in BiVO4 for photoelectrochemical water splitting. Appl Catal B-Environ, 2023, 334: 122865

    Article  CAS  Google Scholar 

  104. Fan K, Chen H, He B, et al. Cobalt polyoxometalate on N-doped carbon layer to boost photoelectrochemical water oxidation of BiVO4. Chem Eng J, 2020, 392: 123744

    Article  CAS  Google Scholar 

  105. Ali M, Pervaiz E, Noor T, et al. Recent advancements in MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: A review. Int J Energy Res, 2020, 45: 1190–1226

    Article  Google Scholar 

  106. Zhou S, Chen K, Huang J, et al. Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Appl Catal B-Environ, 2020, 266: 118513

    Article  CAS  Google Scholar 

  107. Pan JB, Wang BH, Wang JB, et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew Chem Int Ed, 2021, 60: 1433–1440

    Article  CAS  Google Scholar 

  108. Soundarya Mary A, Murugan C, Murugan P, et al. Unravelling the superior photoelectrochemical water oxidation performance of the Al-incorporated CoOOH cocatalyst-loaded BiVO4 photoanode. ACS Sustain Chem Eng, 2023, 11: 13656–13667

    Article  CAS  Google Scholar 

  109. Zhang R, Ning X, Wang Z, et al. Significantly promoting the photogenerated charge separation by introducing an oxygen vacancy regulation strategy on the FeNiOOH co-catalyst. Small, 2022, 18: 2107938

    Article  CAS  Google Scholar 

  110. Liu Y, Gu Y, Yan X, et al. Design ofsandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res, 2015, 8: 2891–2900

    Article  CAS  Google Scholar 

  111. Zhang S, Yu T, Liu Y, et al. A new SiP QDs/TiO2 NRs composite catalyst with Al2O3 passivation layer for enhanced photoelectrochemical water splitting. Chem Eng J, 2022, 429: 132248

    Article  CAS  Google Scholar 

  112. Hu X, Huang J, Zhao F, et al. Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes. J Mater Chem A, 2020, 8: 14915–14920

    Article  CAS  Google Scholar 

  113. Jiao T, Lu C, Zhang D, et al. Bi-functional Fe2ZrO5 modified hematite photoanode for efficient solar water splitting. Appl Catal B-Environ, 2020, 269: 118768

    Article  CAS  Google Scholar 

  114. Chai H, Wang P, Wang T, et al. Surface reconstruction of cobalt species on amorphous cobalt silicate-coated fluorine-doped hematite for efficient photoelectrochemical water oxidation. ACS Appl Mater Interfaces, 2021, 13: 47572–47580

    Article  CAS  PubMed  Google Scholar 

  115. Carey CR, Yu Y, Kuno M, et al. Ultrafast transient absorption measurements of charge carrier dynamics in single II–VI nanowires. J Phys Chem C, 2009, 113: 19077–19081

    Article  CAS  Google Scholar 

  116. Grigioni I, Stamplecoskie KG, Selli E, et al. Dynamics of photogenerated charge carriers in WO3/BiVO4 heterojunction photoanodes. J Phys Chem C, 2015, 119: 20792–20800

    Article  CAS  Google Scholar 

  117. Knowles KE, Koch MD, Shelton JL. Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: spectroelectrochemistry, microscopy, and identification of thermal contributions. J Mater Chem C, 2018, 6: 11853–11867

    Article  CAS  Google Scholar 

  118. Zhao B, Feng C, Huang X, et al. Coupling NiCo catalysts with carbon quantum dots on hematite photoanodes for highly efficient oxygen evolution. J Mater Chem A, 2022, 10: 2813–2818

    Article  CAS  Google Scholar 

  119. Pan JB, Liu X, Wang BH, et al. Conductive MOFs coating on hematite photoanode for activity boost via surface state regulation. Appl Catal B-Environ, 2022, 315: 121526

    Article  CAS  Google Scholar 

  120. Wang K, Liu Y, Kawashima K, et al. Modulating charge transfer efficiency of hematite photoanode with hybrid dual-metal-organic frameworks for boosting photoelectrochemical water oxidation. Adv Sci, 2020, 7: 2002563

    Article  CAS  Google Scholar 

  121. Li F, Benetti D, Zhang M, et al. Modulating the 0D/2D interface of hybrid semiconductors for enhanced photoelectrochemical performances. Small Methods, 2021, 5: 2100109

    Article  CAS  Google Scholar 

  122. Li Y, Wu Q, Chen Y, et al. Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Appl Catal B-Environ, 2021, 290: 120058

    Article  CAS  Google Scholar 

  123. He B, Jia S, Zhao M, et al. General and robust photothermal-heating-enabled high-efficiency photoelectrochemical water splitting. Adv Mater, 2021, 33: 2004406

    Article  CAS  Google Scholar 

  124. Pu YC, Chen WT, Fang MJ, et al. Au–Cd1−xZnxS core–alloyed shell nanocrystals: Boosting the interfacial charge dynamics by adjusting the shell composition. J Mater Chem A, 2018, 6: 17503–17513

    Article  CAS  Google Scholar 

  125. Chang YS, Choi M, Baek M, et al. CdS/CdSe co-sensitized brookite H: TiO2 nanostructures: Charge carrier dynamics and photoelectrochemical hydrogen generation. Appl Catal B-Environ, 2018, 225: 379–385

    Article  CAS  Google Scholar 

  126. Lu Y, Yang Y, Fan X, et al. Boosting charge transport in BiVO4 photoanode for solar water oxidation. Adv Mater, 2022, 34: 2108178

    Article  CAS  Google Scholar 

  127. Masoumi Z, Tayebi M, Kolaei M, et al. Simultaneous enhancement of charge separation and hole transportation in a W:α-Fe2O3/MoS2 photoanode: A collaborative approach of MoS2 as a heterojunction and W as a metal dopant. ACS Appl Mater Interfaces, 2021, 13: 39215–39229

    Article  CAS  PubMed  Google Scholar 

  128. Masoumi Z, Tayebi M, Kolaei M, et al. Efficient and stable core-shell α-Fe2O3/WS2/WOx photoanode for oxygen evolution reaction to enhance photoelectrochemical water splitting. Appl Catal B-Environ, 2022, 313: 121447

    Article  CAS  Google Scholar 

  129. Kang B, Bilal Hussain M, Cheng X, et al. Green electrodeposition synthesis of NiFe-LDH/MoOx/BiVO4 for efficient photoelectrochemical water splitting. J Colloid Interface Sci, 2022, 626: 146–155

    Article  CAS  PubMed  Google Scholar 

  130. Li F, Yang H, Zhuo Q, et al. A cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting. Angew Chem Int Ed, 2021, 60: 1976–1985

    Article  CAS  Google Scholar 

  131. Zhao H, Ning X, Wang Z, et al. Interfacial repairing of semiconductor-electrocatalyst interfaces for efficient photoelectrochemical water oxidation. J Colloid Interface Sci, 2022, 615: 318–326

    Article  CAS  PubMed  Google Scholar 

  132. Wang H, Xia Y, Wen N, et al. Surface states regulation ofsulfide-based photoanode for photoelectrochemical water splitting. Appl Catal B-Environ, 2022, 300: 120717

    Article  CAS  Google Scholar 

  133. Chong R, Wang Z, Lv J, et al. A hybrid CoOOH-rGO/Fe2O3 photoanode with spatial charge separation and charge transfer for efficient photoelectrochemical water oxidation. J Catal, 2021, 399: 170–181

    Article  CAS  Google Scholar 

  134. Kwak J, Bard AJ. Scanning electrochemical microscopy. Apparatus and two-dimensional scans of conductive and insulating substrates. Anal Chem, 1989, 61: 1794–1799

    Article  CAS  Google Scholar 

  135. Li Y, Ning X, Ma Q, et al. Recent advances in electrochemistry by scanning electrochemical microscopy. TrAC Trends Anal Chem, 2016, 80: 242–254

    Article  CAS  Google Scholar 

  136. Conzuelo F, Sliozberg K, Gutkowski R, et al. High-resolution analysis of photoanodes for water splitting by means of scanning photoelectrochemical microscopy. Anal Chem, 2017, 89: 1222–1228

    Article  CAS  PubMed  Google Scholar 

  137. Devaramani S, Ma X, Zhang S, et al. Photo-switchable and wavelength selective axial ligation of thiol-appended molecules to zinc tetraphenylporphyrin: Spectral and charge transfer kinetics studies. J Phys Chem C, 2017, 121: 9729–9738

    Article  CAS  Google Scholar 

  138. Xie B, Ning X, Wei S, et al. A co-activation strategy for enhancing the performance of hematite in photoelectrochemical water oxidation. Chin Chem Lett, 2021, 32: 2279–2282

    Article  CAS  Google Scholar 

  139. Ning X, Li W, Meng Y, et al. New insight into procedure of interface electron transfer through cascade system with enhanced photocatalytic activity. Small, 2018, 14: 1703989

    Article  Google Scholar 

  140. Fan Y, Ning X, Zhang Q, et al. Enhanced photoelectrochemical water splitting on nickel-doped cobalt phosphate by modulating both charge transfer and oxygen evolution efficiencies. ChemSusChem, 2021, 14: 1414–1422

    Article  CAS  PubMed  Google Scholar 

  141. Ning X, Du P, Han Z, et al. Insight into the transition-metal hydroxide cover layer for enhancing photoelectrochemical water oxidation. Angew Chem Int Ed, 2021, 60: 3504–3509

    Article  CAS  Google Scholar 

  142. Ning X, Lu B, Zhang Z, et al. An efficient strategy for boosting photogenerated charge separation by using porphyrins as interfacial charge mediators. Angew Chem Int Ed, 2019, 58: 16800–16805

    Article  CAS  Google Scholar 

  143. Yin D, Ning X, Zhang R, et al. Enhancing charge separation through oxygen vacancy-mediated reverse regulation strategy using porphyrins as model molecules. Small, 2020, 16: 2001752

    Article  CAS  Google Scholar 

  144. Yin D, Ning X, Du P, et al. Cascaded multiple-step hole transfer for enhancing photoelectrochemical water splitting. Appl Catal B-Environ, 2021, 296: 120313

    Article  CAS  Google Scholar 

  145. Zhang S, Du P, Xiao H, et al. Fast interfacial carrier dynamics modulated by bidirectional charge transport channels in ZnIn2S4-based composite photoanodes probed by scanning photoelectrochemical microscopy. Angew Chem Int Ed, 2024, 63: e202315763

    Article  CAS  Google Scholar 

  146. Snowden ME, Güell AG, Lai SCS, et al. Scanning electrochemical cell microscopy: Theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. Anal Chem, 2012, 84: 2483–2491

    Article  CAS  PubMed  Google Scholar 

  147. Wahab OJ, Kang M, Meloni GN, et al. Nanoscale visualization of electrochemical activity at indium tin oxide electrodes. Anal Chem, 2022, 94: 4729–4736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the National Natural Science Foundation of China (22127803, 22222408, 22174110 and 22001193), the Industrial Support Plan of Gansu Provincial Department of Education (2021cyzc-01), the Special Fund Project for Guiding Local Scientific and Technological Development by the Central Government (2020-2060503-17), and the Qin Chuangyuan Innovation and Entrepreneurship Talent Project (QCYRCXM-2022-338).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhang S and Du P collected and summarized the literature. Zhang S wrote the original manuscript; Du P revised the manuscript. Lu X developed the concept and offered creative proposal for improving the depth and coverage of the review. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Peiyao Du  (杜佩瑶) or Xiaoquan Lu  (卢小泉).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Shengya Zhang is a PhD candidate at Northwest Normal University. Her research mainly focuses on the mechanism of photoelectrochemical reactions at material micro-nano interfaces.

Peiyao Du received his PhD degree from the Department of Chemistry, Nankai University. She is now a professor at the College of Chemistry & Pharmacy, Northwest A&F University. Her research focuses on electroanalytical chemistry.

Xiaoquan Lu received PhD degree from Sun Yat-sen University, China. He is a Professor at Northwest Normal University. His research is focused on electroanalytical chemistry, energy, and environmental applications of photo(electro)catalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Du, P. & Lu, X. Advancements in semiconductor-based interface engineering strategies and characterization techniques for carrier dynamics in photoelectrochemical water splitting. Sci. China Mater. 67, 1379–1392 (2024). https://doi.org/10.1007/s40843-023-2819-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2819-8

Keywords