Abstract
Using molecular dynamics simulations, we investigate the influence of Na and Cl ions on the evaporation of nanoscale water on graphene oxide surfaces. As the concentration of NaCl increases from 0 to 1.5 M, the evaporation rate shows a higher decrease on patterned graphene oxide than that on homogeneous graphene oxide. The analysis shows an obvious decrease in the evaporation rate from unoxidized regions, which can be attributed to the increased amount of Na+ ions near the contact lines. The proximity of Na+ significantly extends the H-bond lifetime of the outermost water molecules, which reduces the number of water molecules diffusing from the oxidized to unoxidized regions. Moreover, the effect of the ions on water evaporation is less significant when the oxidation degree varies in a certain range. Our findings advance the understanding of the evaporation process in the presence of ions and highlight the potential application of graphene oxide in achieving controllable evaporation of liquids.
Similar content being viewed by others
References
G. Zarei, M. Homaee, A.M. Liaghat et al., A model for soil surface evaporation based on Campbell’s retention curve. J. Hydrol. 380, 356–361 (2010). https://doi.org/10.1016/j.jhydrol.2009.11.010
F.E. Rockwell, N.M. Holbrook, A.D. Stroock, The competition between liquid and vapor transport in transpiring leaves. Plant Physiol. 164, 1741–1758 (2014). https://doi.org/10.1104/pp.114.236323
W. Tao, K.S. Lackner, A.B. Wright, Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis. Phys. Chem. Chem. Phys. 15, 504–514 (2012). https://doi.org/10.1039/c2cp43124f
A.S. Joshi, Y. Sun, Numerical simulation of colloidal drop deposition dynamics on patterned substrates for printable electronics fabrication. J. Disp. Technol. 6, 579–585 (2010). https://doi.org/10.1109/jdt.2010.2040707
W.L. Cheng, W.W. Zhang, H. Chen et al., Spray cooling and flash evaporation cooling: the current development and application. Renew. Sust. Energ. Rev. 55, 614–628 (2016). https://doi.org/10.1016/j.rser.2015.11.014
G. Duursma, K. Sefiane, A. Kennedy, Experimental studies of nanofluid droplets in spray cooling. Heat Transf. Eng. 30, 1108–1120 (2009). https://doi.org/10.1080/01457630902922467
J.Y. Xiao, Z. Li, X.Z. Ye et al., Self-assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale 6, 996–1004 (2013). https://doi.org/10.1039/c3nr05343a
P. Liu, X. Huang, R. Zhou et al., Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437, 159–162 (2005). https://doi.org/10.1038/nature03926
L.J. Zhang, J. Wang, Y. Luo et al., A novel water layer structure inside nanobubbles at room temperature. Nucl. Sci. Tech. 25, 81–83 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.060503
B. Sobac, D. Brutin, Thermal effects of the substrate on water droplet evaporation. Phys. Rev. E Stat. Nonlinear Soft. Matter Phys. 86, 021602 (2012). https://doi.org/10.1103/physreve.86.021602
W. Mathers, Evaporation from the ocular surface. Exp. Eye Res. 78, 389–394 (2004). https://doi.org/10.1016/s0014-4835(03)00199-4
N. Musolino, B.L. Trout, Insight into the molecular mechanism of water evaporation via the finite temperature string method. J. Chem. Phys. 138, 134707 (2013). https://doi.org/10.1063/1.4798458
C. Maqua, G. Castanet, F. Lemoine, Bicomponent droplets evaporation: temperature measurements and modelling. Fuel 87, 2932–2942 (2008). https://doi.org/10.1016/j.fuel.2008.04.021
J.P. Mcculley, J.D. Aronowicz, E. Uchiyama et al., Correlations in a change in aqueous tear evaporation with a change in relative humidity and the impact. Am. J. Ophthalmol. 141, 758–760 (2006). https://doi.org/10.1016/j.ajo.2005.10.057
M.D. Webster, J.R. King, Temperature and humidity dynamics of cutaneous and respiratory evaporation in pigeons, Columba livia. J. Comp. Physiol. B. 157, 253–260 (1987). https://doi.org/10.1007/bf00692370
H.S. Dong, S.H. Lee, J.Y. Jung et al., Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectron. Eng. 86, 1350–1353 (2009). https://doi.org/10.1016/j.mee.2009.01.026
M. Lee, D. Lee, N. Jung et al., Evaporation of water droplets from hydrophobic and hydrophilic nanoporous microcantilevers. Appl. Phys. Lett. 98, 5404 (2011). https://doi.org/10.1063/1.3541958
M. Elbaum, S.G. Lipson, How does a thin wetted film dry up? Phys. Rev. Lett. 72, 3562 (1994). https://doi.org/10.1103/physrevlett.72.3562
R. Wan, G. Shi, Accelerated evaporation of water on graphene oxide. Phys. Chem. Chem. Phys. 19, 8843–8847 (2017). https://doi.org/10.1039/c7cp00553a
M. He, D. Liao, H. Qiu, Multicomponent droplet evaporation on chemical micro-patterned surfaces. Sci. Rep. 7, 41897 (2017). https://doi.org/10.1038/srep41897
Y. Guo, R. Wan, Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures. Phys. Chem. Chem. Phys. 20, 12272–12277 (2018). https://doi.org/10.1039/c8cp00037a
G. Shi, L. Chen, Y. Yang et al., Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions. Nat. Chem. 10, 776 (2018). https://doi.org/10.1038/s41557-018-0061-4
X. Wang, G. Shi, S. Liang et al., Unexpectedly high salt accumulation inside carbon nanotubes soaked in very dilute salt solutions. Phys. Rev. Lett. 121, 226102 (2018). https://doi.org/10.1103/physrevlett.121.226102
G. Shi, Y. Dang, T. Pan et al., Unexpectedly enhanced solubility of aromatic amino acids and peptides in an aqueous solution of divalent transition-metal cations. Phys. Rev. Lett. 117, 238102 (2016). https://doi.org/10.1103/physrevlett.117.238102
G. Shi, Y. Ding, H. Fang, Unexpectedly strong anion-π interactions on the graphene flakes. J. Comput. Chem. 33, 1328–1337 (2012). https://doi.org/10.1002/jcc.22964
J. Liu, G. Shi, G. Pan, Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 115, 164502 (2015). https://doi.org/10.1103/physrevlett.115.164502
X. Nie, B. Zhou, C. Wang, Wetting behaviors of methanol, ethanol, and propanol on hydroxylated SiO2 substrate. Nucl. Sci. Tech. 29, 18 (2018). https://doi.org/10.1007/s41365-018-0364-6
A.S. Ansari, S.N. Pandis, Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmos. Environ. 33, 745–757 (1999). https://doi.org/10.1016/s1352-2310(98)00221-0
M. Colonna, V. Baran, S. Burrello et al., Exotic break-up modes in heavy ion reactions up to Fermi energies. Nucl. Sci. Tech. 26, 124–130 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.s20509
L. Francalanza, U. Abbondanno, F. Amorini et al., Competition between fusion-evaporation and multifragmentation in central collisions in Ni58 + Ca48 at 25A MeV. Nucl. Sci. Tech. 24, 82–88 (2013). https://doi.org/10.1088/1742-6596/420/1/012084
D. Li, G. Shi, F. Hong et al., Potentials of classical force fields for interactions between Na+ and carbon nanotubes. Chin. Phys. B 27, 098801 (2018). https://doi.org/10.1088/1674-1056/27/9/098801
G. Fang, J. Chen, Hindered gas transport through aqueous salt solution interface. J. Phys. Chem. C 122, 20774–20780 (2018). https://doi.org/10.1021/acs.jpcc.8b05495
W.S. Drisdell, R.J. Saykally, R.C. Cohen, On the evaporation of ammonium sulfate solution. Proc. Natl. Acad. Sci. USA 106, 18897–18901 (2009). https://doi.org/10.1073/pnas.0907988106
T. Furuta, A. Nakajima, M. Sakai et al., Evaporation and sliding of water droplets on fluoroalkylsilane coatings with nanoscale roughness. Langmuir 25, 5417–5420 (2009). https://doi.org/10.1021/la8040665
K.C. Duffey, S. Orion, N.L. Wong et al., Evaporation kinetics of aqueous acetic acid droplets: effects of soluble organic aerosol components on the mechanism of water evaporation. Phys. Chem. Chem. Phys. 15, 11634–11639 (2013). https://doi.org/10.1039/c3cp51148k
S. Sjogren, M. Gysel, E. Weingartner et al., Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. J. Aerosol Sci. 38, 157–171 (2007). https://doi.org/10.1016/j.jaerosci.2006.11.005
P.Y. Chuang, R.J. Charlson, J.H. Seinfeld, Kinetic limitations on droplet formation in clouds. Nature 390, 594–596 (1997). https://doi.org/10.1038/37576
W.S. Drisdell, R.J. Saykally, R.C. Cohen, Effect of surface active ions on the rate of water evaporation. J. Phys. Chem. C 114, 11880–11885 (2010). https://doi.org/10.1021/jp101726x
A.M. Rizzuto, E.S. Cheng, K.J. Lam et al., Surprising effects of hydrochloric acid on the water evaporation coefficient observed by raman thermometry. J. Phys. Chem. C 121, 4420–4425 (2017). https://doi.org/10.1021/acs.jpcc.6b12851
H. He, J. Klinowski, M. Forster et al., A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998). https://doi.org/10.1016/s0009-2614(98)00144-4
Y. Tu, M. Lv, P. Xiu et al., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8, 594 (2013). https://doi.org/10.1038/nnano.2013.125
D. Chen, B. Feng, H. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012). https://doi.org/10.1021/cr300115g
W.L. Jorgensen, J. Chandrasekhar, J.D. Madura et al., Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). https://doi.org/10.1063/1.445869
V.V. Zhakhovskii, S.I. Anisimov, Molecular-dynamics simulation of evaporation of a liquid. J. Exp. Theor. Phys. 84, 734–745 (1997). https://doi.org/10.1134/1.558192
J.C. Phillips, R. Braun, W. Wang et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). https://doi.org/10.1002/jcc.20289
J.A.D. MacKerell, D. Bashford, M. Bellott et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998). https://doi.org/10.1021/jp973084f
T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993). https://doi.org/10.1063/1.464397
R.B. Jackson, S.R. Carpenter, C.N. Dahm et al., Water in a changing world. Ecol. Appl. 11, 1027–1045 (2001). https://doi.org/10.2307/3061010
Z. Zhu, H. Guo, X. Jiang et al., Reversible hydrophobicity-hydrophilicity transition modulated by surface curvature. J. Phys. Chem. Lett. 9, 2346–2352 (2018). https://doi.org/10.1021/acs.jpclett.8b00749
R. Wan, C. Wang, X. Lei et al., Enhancement of water evaporation on solid surfaces with nanoscale hydrophobic-hydrophilic patterns. Phys. Rev. Lett. 115, 195901 (2015). https://doi.org/10.1103/physrevlett.115.195901
L. Chen, G. Shi, J. Shen et al., Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380 (2017). https://doi.org/10.1038/nature24044
Acknowledgements
We thank Haiping Fang, Yi Gao, Beien Zhu, Xiaoling Lei, Jige Chen, Shanshan Liang, Xing Liu, Jingyu Qi, Gang Fang, Zhi Zhu, Yizhou Yang, Chonghai Qi, Yangchao Lu, Yangjie Wang, Xiaomeng Yu, Zhongjie Zhu, Xiaoyan Li, Huishu Ma, Jie Jiang, and Liuhua Mu for their constructive suggestions and help.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China (Nos. U1832170 and 11474299) and Computer Network Information Center of Chinese Academy of Sciences.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Nan, X., Guo, YW. & Wan, RZ. Effect of Na and Cl ions on water evaporation on graphene oxide. NUCL SCI TECH 30, 122 (2019). https://doi.org/10.1007/s41365-019-0646-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s41365-019-0646-7