Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Effect of Na and Cl ions on water evaporation on graphene oxide

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Using molecular dynamics simulations, we investigate the influence of Na and Cl ions on the evaporation of nanoscale water on graphene oxide surfaces. As the concentration of NaCl increases from 0 to 1.5 M, the evaporation rate shows a higher decrease on patterned graphene oxide than that on homogeneous graphene oxide. The analysis shows an obvious decrease in the evaporation rate from unoxidized regions, which can be attributed to the increased amount of Na+ ions near the contact lines. The proximity of Na+ significantly extends the H-bond lifetime of the outermost water molecules, which reduces the number of water molecules diffusing from the oxidized to unoxidized regions. Moreover, the effect of the ions on water evaporation is less significant when the oxidation degree varies in a certain range. Our findings advance the understanding of the evaporation process in the presence of ions and highlight the potential application of graphene oxide in achieving controllable evaporation of liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Zarei, M. Homaee, A.M. Liaghat et al., A model for soil surface evaporation based on Campbell’s retention curve. J. Hydrol. 380, 356–361 (2010). https://doi.org/10.1016/j.jhydrol.2009.11.010

    Article  Google Scholar 

  2. F.E. Rockwell, N.M. Holbrook, A.D. Stroock, The competition between liquid and vapor transport in transpiring leaves. Plant Physiol. 164, 1741–1758 (2014). https://doi.org/10.1104/pp.114.236323

    Article  Google Scholar 

  3. W. Tao, K.S. Lackner, A.B. Wright, Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis. Phys. Chem. Chem. Phys. 15, 504–514 (2012). https://doi.org/10.1039/c2cp43124f

    Article  Google Scholar 

  4. A.S. Joshi, Y. Sun, Numerical simulation of colloidal drop deposition dynamics on patterned substrates for printable electronics fabrication. J. Disp. Technol. 6, 579–585 (2010). https://doi.org/10.1109/jdt.2010.2040707

    Article  Google Scholar 

  5. W.L. Cheng, W.W. Zhang, H. Chen et al., Spray cooling and flash evaporation cooling: the current development and application. Renew. Sust. Energ. Rev. 55, 614–628 (2016). https://doi.org/10.1016/j.rser.2015.11.014

    Article  Google Scholar 

  6. G. Duursma, K. Sefiane, A. Kennedy, Experimental studies of nanofluid droplets in spray cooling. Heat Transf. Eng. 30, 1108–1120 (2009). https://doi.org/10.1080/01457630902922467

    Article  Google Scholar 

  7. J.Y. Xiao, Z. Li, X.Z. Ye et al., Self-assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale 6, 996–1004 (2013). https://doi.org/10.1039/c3nr05343a

    Article  Google Scholar 

  8. P. Liu, X. Huang, R. Zhou et al., Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 437, 159–162 (2005). https://doi.org/10.1038/nature03926

    Article  Google Scholar 

  9. L.J. Zhang, J. Wang, Y. Luo et al., A novel water layer structure inside nanobubbles at room temperature. Nucl. Sci. Tech. 25, 81–83 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.060503

    Article  Google Scholar 

  10. B. Sobac, D. Brutin, Thermal effects of the substrate on water droplet evaporation. Phys. Rev. E Stat. Nonlinear Soft. Matter Phys. 86, 021602 (2012). https://doi.org/10.1103/physreve.86.021602

    Article  Google Scholar 

  11. W. Mathers, Evaporation from the ocular surface. Exp. Eye Res. 78, 389–394 (2004). https://doi.org/10.1016/s0014-4835(03)00199-4

    Article  Google Scholar 

  12. N. Musolino, B.L. Trout, Insight into the molecular mechanism of water evaporation via the finite temperature string method. J. Chem. Phys. 138, 134707 (2013). https://doi.org/10.1063/1.4798458

    Article  Google Scholar 

  13. C. Maqua, G. Castanet, F. Lemoine, Bicomponent droplets evaporation: temperature measurements and modelling. Fuel 87, 2932–2942 (2008). https://doi.org/10.1016/j.fuel.2008.04.021

    Article  Google Scholar 

  14. J.P. Mcculley, J.D. Aronowicz, E. Uchiyama et al., Correlations in a change in aqueous tear evaporation with a change in relative humidity and the impact. Am. J. Ophthalmol. 141, 758–760 (2006). https://doi.org/10.1016/j.ajo.2005.10.057

    Article  Google Scholar 

  15. M.D. Webster, J.R. King, Temperature and humidity dynamics of cutaneous and respiratory evaporation in pigeons, Columba livia. J. Comp. Physiol. B. 157, 253–260 (1987). https://doi.org/10.1007/bf00692370

    Article  Google Scholar 

  16. H.S. Dong, S.H. Lee, J.Y. Jung et al., Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectron. Eng. 86, 1350–1353 (2009). https://doi.org/10.1016/j.mee.2009.01.026

    Article  Google Scholar 

  17. M. Lee, D. Lee, N. Jung et al., Evaporation of water droplets from hydrophobic and hydrophilic nanoporous microcantilevers. Appl. Phys. Lett. 98, 5404 (2011). https://doi.org/10.1063/1.3541958

    Article  Google Scholar 

  18. M. Elbaum, S.G. Lipson, How does a thin wetted film dry up? Phys. Rev. Lett. 72, 3562 (1994). https://doi.org/10.1103/physrevlett.72.3562

    Article  Google Scholar 

  19. R. Wan, G. Shi, Accelerated evaporation of water on graphene oxide. Phys. Chem. Chem. Phys. 19, 8843–8847 (2017). https://doi.org/10.1039/c7cp00553a

    Article  Google Scholar 

  20. M. He, D. Liao, H. Qiu, Multicomponent droplet evaporation on chemical micro-patterned surfaces. Sci. Rep. 7, 41897 (2017). https://doi.org/10.1038/srep41897

    Article  Google Scholar 

  21. Y. Guo, R. Wan, Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures. Phys. Chem. Chem. Phys. 20, 12272–12277 (2018). https://doi.org/10.1039/c8cp00037a

    Article  Google Scholar 

  22. G. Shi, L. Chen, Y. Yang et al., Two-dimensional Na–Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions. Nat. Chem. 10, 776 (2018). https://doi.org/10.1038/s41557-018-0061-4

    Article  Google Scholar 

  23. X. Wang, G. Shi, S. Liang et al., Unexpectedly high salt accumulation inside carbon nanotubes soaked in very dilute salt solutions. Phys. Rev. Lett. 121, 226102 (2018). https://doi.org/10.1103/physrevlett.121.226102

    Article  Google Scholar 

  24. G. Shi, Y. Dang, T. Pan et al., Unexpectedly enhanced solubility of aromatic amino acids and peptides in an aqueous solution of divalent transition-metal cations. Phys. Rev. Lett. 117, 238102 (2016). https://doi.org/10.1103/physrevlett.117.238102

    Article  Google Scholar 

  25. G. Shi, Y. Ding, H. Fang, Unexpectedly strong anion-π interactions on the graphene flakes. J. Comput. Chem. 33, 1328–1337 (2012). https://doi.org/10.1002/jcc.22964

    Article  Google Scholar 

  26. J. Liu, G. Shi, G. Pan, Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 115, 164502 (2015). https://doi.org/10.1103/physrevlett.115.164502

    Article  Google Scholar 

  27. X. Nie, B. Zhou, C. Wang, Wetting behaviors of methanol, ethanol, and propanol on hydroxylated SiO2 substrate. Nucl. Sci. Tech. 29, 18 (2018). https://doi.org/10.1007/s41365-018-0364-6

    Article  Google Scholar 

  28. A.S. Ansari, S.N. Pandis, Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmos. Environ. 33, 745–757 (1999). https://doi.org/10.1016/s1352-2310(98)00221-0

    Article  Google Scholar 

  29. M. Colonna, V. Baran, S. Burrello et al., Exotic break-up modes in heavy ion reactions up to Fermi energies. Nucl. Sci. Tech. 26, 124–130 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.s20509

    Article  Google Scholar 

  30. L. Francalanza, U. Abbondanno, F. Amorini et al., Competition between fusion-evaporation and multifragmentation in central collisions in Ni58 + Ca48 at 25A MeV. Nucl. Sci. Tech. 24, 82–88 (2013). https://doi.org/10.1088/1742-6596/420/1/012084

    Article  Google Scholar 

  31. D. Li, G. Shi, F. Hong et al., Potentials of classical force fields for interactions between Na+ and carbon nanotubes. Chin. Phys. B 27, 098801 (2018). https://doi.org/10.1088/1674-1056/27/9/098801

    Article  Google Scholar 

  32. G. Fang, J. Chen, Hindered gas transport through aqueous salt solution interface. J. Phys. Chem. C 122, 20774–20780 (2018). https://doi.org/10.1021/acs.jpcc.8b05495

    Article  Google Scholar 

  33. W.S. Drisdell, R.J. Saykally, R.C. Cohen, On the evaporation of ammonium sulfate solution. Proc. Natl. Acad. Sci. USA 106, 18897–18901 (2009). https://doi.org/10.1073/pnas.0907988106

    Article  Google Scholar 

  34. T. Furuta, A. Nakajima, M. Sakai et al., Evaporation and sliding of water droplets on fluoroalkylsilane coatings with nanoscale roughness. Langmuir 25, 5417–5420 (2009). https://doi.org/10.1021/la8040665

    Article  Google Scholar 

  35. K.C. Duffey, S. Orion, N.L. Wong et al., Evaporation kinetics of aqueous acetic acid droplets: effects of soluble organic aerosol components on the mechanism of water evaporation. Phys. Chem. Chem. Phys. 15, 11634–11639 (2013). https://doi.org/10.1039/c3cp51148k

    Article  Google Scholar 

  36. S. Sjogren, M. Gysel, E. Weingartner et al., Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. J. Aerosol Sci. 38, 157–171 (2007). https://doi.org/10.1016/j.jaerosci.2006.11.005

    Article  Google Scholar 

  37. P.Y. Chuang, R.J. Charlson, J.H. Seinfeld, Kinetic limitations on droplet formation in clouds. Nature 390, 594–596 (1997). https://doi.org/10.1038/37576

    Article  Google Scholar 

  38. W.S. Drisdell, R.J. Saykally, R.C. Cohen, Effect of surface active ions on the rate of water evaporation. J. Phys. Chem. C 114, 11880–11885 (2010). https://doi.org/10.1021/jp101726x

    Article  Google Scholar 

  39. A.M. Rizzuto, E.S. Cheng, K.J. Lam et al., Surprising effects of hydrochloric acid on the water evaporation coefficient observed by raman thermometry. J. Phys. Chem. C 121, 4420–4425 (2017). https://doi.org/10.1021/acs.jpcc.6b12851

    Article  Google Scholar 

  40. H. He, J. Klinowski, M. Forster et al., A new structural model for graphite oxide. Chem. Phys. Lett. 287, 53–56 (1998). https://doi.org/10.1016/s0009-2614(98)00144-4

    Article  Google Scholar 

  41. Y. Tu, M. Lv, P. Xiu et al., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8, 594 (2013). https://doi.org/10.1038/nnano.2013.125

    Article  Google Scholar 

  42. D. Chen, B. Feng, H. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012). https://doi.org/10.1021/cr300115g

    Article  Google Scholar 

  43. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura et al., Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). https://doi.org/10.1063/1.445869

    Article  Google Scholar 

  44. V.V. Zhakhovskii, S.I. Anisimov, Molecular-dynamics simulation of evaporation of a liquid. J. Exp. Theor. Phys. 84, 734–745 (1997). https://doi.org/10.1134/1.558192

    Article  Google Scholar 

  45. J.C. Phillips, R. Braun, W. Wang et al., Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). https://doi.org/10.1002/jcc.20289

    Article  Google Scholar 

  46. J.A.D. MacKerell, D. Bashford, M. Bellott et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998). https://doi.org/10.1021/jp973084f

    Article  Google Scholar 

  47. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993). https://doi.org/10.1063/1.464397

    Article  Google Scholar 

  48. R.B. Jackson, S.R. Carpenter, C.N. Dahm et al., Water in a changing world. Ecol. Appl. 11, 1027–1045 (2001). https://doi.org/10.2307/3061010

    Article  Google Scholar 

  49. Z. Zhu, H. Guo, X. Jiang et al., Reversible hydrophobicity-hydrophilicity transition modulated by surface curvature. J. Phys. Chem. Lett. 9, 2346–2352 (2018). https://doi.org/10.1021/acs.jpclett.8b00749

    Article  Google Scholar 

  50. R. Wan, C. Wang, X. Lei et al., Enhancement of water evaporation on solid surfaces with nanoscale hydrophobic-hydrophilic patterns. Phys. Rev. Lett. 115, 195901 (2015). https://doi.org/10.1103/physrevlett.115.195901

    Article  Google Scholar 

  51. L. Chen, G. Shi, J. Shen et al., Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380 (2017). https://doi.org/10.1038/nature24044

    Article  Google Scholar 

Download references

Acknowledgements

We thank Haiping Fang, Yi Gao, Beien Zhu, Xiaoling Lei, Jige Chen, Shanshan Liang, Xing Liu, Jingyu Qi, Gang Fang, Zhi Zhu, Yizhou Yang, Chonghai Qi, Yangchao Lu, Yangjie Wang, Xiaomeng Yu, Zhongjie Zhu, Xiaoyan Li, Huishu Ma, Jie Jiang, and Liuhua Mu for their constructive suggestions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Zheng Wan.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. U1832170 and 11474299) and Computer Network Information Center of Chinese Academy of Sciences.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, X., Guo, YW. & Wan, RZ. Effect of Na and Cl ions on water evaporation on graphene oxide. NUCL SCI TECH 30, 122 (2019). https://doi.org/10.1007/s41365-019-0646-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0646-7

Keywords