Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Bi-objective Synthesis of CCUS System Considering Inherent Safety and Economic Criteria

  • Original Research Paper
  • Published:
Process Integration and Optimization for Sustainability Aims and scope Submit manuscript

Abstract

Carbon capture, utilization, and storage (CCUS) is a carbon management strategy to mitigate CO2 emissions from point sources. It is a crucial technology for local low-carbon development. Regional source-sink models have been developed based on the carbon life cycle. In this work, a bi-objective mixed-integer nonlinear programming model is developed for optimizing the carbon management network of a regional CCUS system. The goal is to develop a set of solutions that achieve various trade-offs between economic and safety criteria, with the latter based on overall annual risk. The model considers different point sources of CO2 emissions, multiple capture technologies, and four utilization sinks (e.g., greenhouse, urea synthesis, methanol production, and enhanced oil recovery). The model was applied and demonstrated in Dongying, China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The model code and data used in this work are available upon reasonable request addressed to the corresponding author.

Abbreviations

s ∈ S:

The sources of flue gases emissions

t ∈ T:

The units for trapping and treating flue gases

u ∈ U:

The units without any treatment of flue gas

k ∈ K:

The sinks for fixed CO2

r ∈ RISK:

Different risk types

i ∈ COMPON:

The components in process

j ∈ UNITS:

The units in process

\({C}_{\mathrm{base}}\) :

Base cost in the carbon dioxide pipeline capital cost

\({C}_{k}^{\mathrm{sink}}\) :

Cost of technical treatment of CO2 in a sink

\({C}_{s}^{T}\) :

The cost parameter of the treatment unit

\({C}^{\mathrm{tax}}\) :

Tax value cost parameter per t CO2

\(CRF\) :

Capital recovery factor of total cost per year

\(Elec\) :

Electricity fees

\({f}_{j}^{\mathrm{fail}}\) :

Failure rate of different units in the process

\({G}_{i,r}\) :

Explosively, toxicity and whether the composition is flammable measure

\({G}_{k}^{\mathrm{max}}\) :

The maximum flow requirement for sinks

\({G}_{\mathrm{base}}\) :

Base length for carbon dioxide pipeline calculation

\({G}_{\mathrm{pipe},s,k}\) :

The distance between source and sink

\({L}_{h}\) :

The liquid release distance from the pipeline

\({L}_{s}\) :

The lower limit of available flow from the source

\({L}_{s,k}\) :

The lower flow limit of pipe flow

\({M}_{\mathrm{base}}\) :

Base flow of CO2 used to calculate pipeline capital costs, in t CO2 per day

\({M}_{s}\) :

The upper bound flow available from the source

\({M}_{s,k}\) :

The upper flow limit of pipe flow

\(NCRT\) :

The net carbon reduction target

\(OM\) :

Pipeline annual operation and maintenance cost rate

\({P}^{\mathrm{comp}}\) :

Compressor power parameters

\({P}_{d}\) :

The average value of population density

\({Pf}_{h}\) :

Probability of occurrence of event h

\({P}^{\mathrm{pump}}\) :

Pump power parameters

\({S}_{h}\) :

Affected area of pipeline release

\({y}_{u}\) :

Composition of the untreated source

\({y}_{s}\) :

The raw source component located at a source

\({y}_{s,t}\) :

Composition of the treated source

\({Z}_{k}^{\mathrm{min}}\) :

The minimum composition requirement for sink

\(\alpha\) :

CO2 flow rate scaling factor

\(\beta\) :

Distance scaling factor

\({\gamma }_{t}\) :

The carbon footprint parameters related to energy use

\({\varepsilon }_{p}\) :

The carbon footprint parameter related to electricity use

\({\varepsilon }_{t}\) :

The carbon removal efficiency of treatment units

\({\vartheta }_{t}\) :

The sink efficiency factor

\({AI }_{r,i,j}\) :

The severity of consequences

\({C}_{s,k}^{\mathrm{Compression}}\) :

The compression and preparation cost from source to sink

\({C}_{s,k}^{\mathrm{compressor}}\) :

The total cost of the compressor from source to sink

\({C}_{s,k}^{ \mathrm{pump}}\) :

The total cost of the pump from source to sink

\({C}_{s,k}^{\mathrm{Sinks}}\) :

The cost of processing CO2 in a given sink

\({C}_{s,k}^{\mathrm{Taxes}}\) :

Total income from CO2 tax value

\({C}_{s,k}^{\mathrm{Transportation}}\) :

The transportation cost from source to sink

\({C}_{s,k}^{\mathrm{Treatment}}\) :

The treatment cost from the source to the sink

\({F}_{s,k}\) :

The flow into sink

\({m}_{i}\) :

The mass of substances in components (t)

\(R\) :

Total risk level

\({R}^{\mathrm{capture}}\) :

Total risk of carbon capture process

\({R}^{\mathrm{storage}}\) :

Total risk of carbon storage process

\({R}^{\mathrm{transport}}\) :

Total risk of carbon transport process

\({R}^{\mathrm{utilization}}\) :

Total risk of carbon utilization process

\({R}_{r,i,j}\) :

Risks in each unit and component corresponding to various risks

\({R}_{s}\) :

The raw source flow of a source s

\({T}_{s,k,t}\) :

The flow of treatment units

\({U}_{s,k}\) :

The flow of untreated units

\(Z\) :

Annual total cost

References

  • Al Baroudi H, Patchigolla K, Thanganadar D, Jonnalagadda K (2021) Experimental study of accidental leakage behaviour of liquid CO2 under shipping conditions. Process Saf Environ Prot 153:439–451. https://doi.org/10.1016/j.psep.2021.07.038

    Article  Google Scholar 

  • Al-Mohannadi DM, Linke P (2016) On the systematic carbon integration of industrial parks for climate footprint reduction. J Clean Prod 112:4053–4064. https://doi.org/10.1016/j.jclepro.2015.05.094

    Article  Google Scholar 

  • Arning K, Offermann-van Heek J, Linzenich A, Kaetelhoen A, Sternberg A, Bardow A, Ziefle M (2019) Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy 125:235–249. https://doi.org/10.1016/j.enpol.2018.10.039

    Article  Google Scholar 

  • Baik E, Sanchez DL, Turner PA, Mach KJ, Field CB, Benson SM (2018) Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States. Proc Natl Acad Sci USA 115(13):3290–3295. https://doi.org/10.1073/pnas.1720338115

    Article  Google Scholar 

  • Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124(6):926–927

    Article  Google Scholar 

  • Brooke A, Kendrick D, Meeruas A, Raman R (2011) GAMS Language Guide. GAMS Development Corporation, Washington, DC

    Google Scholar 

  • Carattini S, Carvalho M, Fankhauser S (2018) Overcoming public resistance to carbon taxes. Wiley Interdiscip Rev Clim Change 9(5):e531. https://doi.org/10.1002/wcc.531

    Article  Google Scholar 

  • Chen S, Liu J, Zhang Q, Teng F, McLellan BC (2022) A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew Sustain Energy Rev 167:112537. https://doi.org/10.1016/j.rser.2022.112537

    Article  Google Scholar 

  • Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies A critical analysis and comparison of their life cycle environmental impacts. J CO2 Utilization 9:82–102

    Article  Google Scholar 

  • d’Amore F, Mocellin P, Vianello C, Maschio G, Bezzo F (2018) Economic optimisation of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures. Appl Energy 223:401–415. https://doi.org/10.1016/j.apenergy.2018.04.043

    Article  Google Scholar 

  • Diao Y, Zhang S, Wang Y, Li X, Cao H (2014) Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS Demonstration Project as a case study. Environ Earth Sci 73(11):7571–7586. https://doi.org/10.1007/s12665-014-3928-8

    Article  Google Scholar 

  • Eini S, Shahhosseini HR, Javidi M, Sharifzadeh M, Rashtchian D (2016) Inherently safe and economically optimal design using multi-objective optimization: the case of a refrigeration cycle. Process Saf Environ Prot 104:254–267. https://doi.org/10.1016/j.psep.2016.09.010

    Article  Google Scholar 

  • Fan J-L, Xu M, Wei S, Shen S, Diao Y, Zhang X (2021) Carbon reduction potential of China’s coal-fired power plants based on a CCUS source-sink matching model. Resour Conserv Recycl 168:105320. https://doi.org/10.1016/j.resconrec.2020.105320

    Article  Google Scholar 

  • GCCSI (Global CCS Institute), 2021. Global status of CCS 2021, CCS accelerating to net zero

  • Hasan MM, Faruque EL, First FB, Floudas CA (2015) A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput Chem Eng 81:2–21. https://doi.org/10.1016/j.compchemeng.2015.04.034

    Article  Google Scholar 

  • Haszeldine RS, Flude S, Johnson G, Scott V (2018) Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments. Philo Trans Royal Soc Math Phys Eng Sci 376(2119):1–23. https://doi.org/10.1098/rsta.2016.0447

    Article  Google Scholar 

  • IEA. 2020. Energy Technology Perspectives 2020: Special Report on Carbon Capture Utilisation and Storage (International Energy Agency)

  • IPCC. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, WaterfieldT (2018). “Global warming of 1.5°C an IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.” World Meteorological Organization, Geneva, Switzerland

  • Kegl T, Čuček L, KovačKralj A, Kravanja Z (2021) Conceptual MINLP approach to the development of a CO2 supply chain network – simultaneous consideration of capture and utilization process flowsheets. J Clean Prod 314:128008. https://doi.org/10.1016/j.jclepro.2021.128008

    Article  Google Scholar 

  • Lamb WF, Wiedmann T, Pongratz J, Andrew R, Crippa M, Olivier JGJ, Wiedenhofer D, Mattioli G, Khourdajie AA, House J, Pachauri S, Figueroa M, Saheb Y, Slade R, Hubacek K, Sun L, Ribeiro S K, Khennas S, de la Rue du Can S, Chapungu L, Davis SJ, Bashmakov I, Dai H, Dhakal S, Tan X, Geng Y, Gu B, and Minx J (2021). “A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ Res Lett 16 (7). https://doi.org/10.1088/1748-9326/abee4e

  • Lee S-Y, Lee I-B, Han J (2019) Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference. Appl Energy 238:34–44. https://doi.org/10.1016/j.apenergy.2019.01.058

    Article  Google Scholar 

  • Leonzio G, Bogle D, Foscolo PU, Zondervan E (2020) Optimization of CCUS supply chains in the UK: a strategic role for emissions reduction. Chem Eng Res Des 155:211–228. https://doi.org/10.1016/j.cherd.2020.01.002

    Article  Google Scholar 

  • Liu HJ, Were P, Li Q, Gou Y, Hou Z (2017) Worldwide status of CCUS technologies and their development and challenges in China. Geofluids 2017:1–25. https://doi.org/10.1155/2017/6126505

    Article  Google Scholar 

  • Marbun BTH, Santoso D, Kadir WGA, Wibowo A, Suardana P, Prabowo H, Susilo D, Sasongko D, Sinaga SZ, Purbantanu BA, Palilu JM, Sule R (2021) Improvement of borehole and casing assessment of CO2-EOR/CCUS injection and production well candidates in Sukowati Field, Indonesia in a well-based scale. Energy Rep 7:1598–1615. https://doi.org/10.1016/j.egyr.2021.03.019

    Article  Google Scholar 

  • McKinley GA, Pilcher DJ, Fay AR, Lindsay K, Long MC, Lovenduski NS (2016) Timescales for detection of trends in the ocean carbon sink. Nature 530(7591):469–472. https://doi.org/10.1038/nature16958

    Article  Google Scholar 

  • Minx J C, Lamb W F, Callaghan MW, Fuss S, Hilaire J, Creutzig F, Amann T, Beringer T, de Oliveira Garcia W, Hartmann J, Khanna T, Lenzi D, Luderer G, Nemet GF, Rogelj J, Smith P, Vicente Vicente JL, Wilcox J, and del Mar Zamora Dominguez M (2018). “Negative emissions—Part 1: research landscape and synthesis.” Environ Res Lett 13 (6). https://doi.org/10.1088/1748-9326/aabf9b

  • Nemet A, Klemeš JJ, Kravanja Z (2018) Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint. Front Chem Sci Eng 12(4):745–762. https://doi.org/10.1007/s11705-018-1779-7

    Article  Google Scholar 

  • Preston C, Monea M, Jazrawi W, Brown K, Whittaker S, White D, Law D, Chalaturnyk R, Rostron B (2005) IEA GHG Weyburn CO2 monitoring and storage project. Fuel Process Technol 86(14–15):1547–1568. https://doi.org/10.1016/j.fuproc.2005.01.019

    Article  Google Scholar 

  • Rafiee A, Rajab Khalilpour K, Milani D, Panahi M (2018) Trends in CO2 conversion and utilization: A review from process systems perspective. J Environ Chem Eng 6(5):5771–5794. https://doi.org/10.1016/j.jece.2018.08.065

    Article  Google Scholar 

  • Ravanchi MT, Sahebdelfar S (2021) Catalytic conversions of CO2 to help mitigate climate change: Recent process developments. Process Saf Environ Prot 145:172–194

    Article  Google Scholar 

  • Romano MC, Chiesa P, Lozza G (2010) Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes. Int J Greenhouse Gas Control 4(5):785–797. https://doi.org/10.1016/j.ijggc.2010.04.015

    Article  Google Scholar 

  • Rubin ES (2008) CO2 capture and transport, Elements 4(5):311-317

  • Sharma T, Xu Y (2021) Domestic and international CO2 source-sink matching for decarbonizing India’s electricity. Resour Conserv Recycl 174:105824. https://doi.org/10.1016/j.resconrec.2021.105824

    Article  Google Scholar 

  • Sheng J, Han X, Zhou H (2017) Spatially varying patterns of afforestation/reforestation and socio-economic factors in China: a geographically weighted regression approach. J Clean Prod 153:362–371. https://doi.org/10.1016/j.jclepro.2016.06.055

    Article  Google Scholar 

  • Spínola AC, Pinheiro CT, Ferreira AG, Gando-Ferreira LM (2021) Mineral carbonation of a pulp and paper industry waste for CO2 sequestration. Process Saf Environ Prot 148:968–979. https://doi.org/10.1016/j.psep.2021.02.019

    Article  Google Scholar 

  • Sun L, Chen W (2022) “Impact of carbon tax on CCUS source-sink matching: finding from the improved China CCS DSS. J Clean Prod 333:130027. https://doi.org/10.1016/j.jclepro.2021.130027

    Article  Google Scholar 

  • Tapia JFD, Lee J-Y, Ooi REH, Foo DCY, Tan RR (2018) A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Prod Consump 13:1–15

    Article  Google Scholar 

  • Thiruvenkatachari R, Su S, An H, Yu XX (2009) Post combustion CO2 capture by carbon fibre monolithic adsorbents. Prog Energy Combust Sci 35(5):438–455. https://doi.org/10.1016/j.pecs.2009.05.003

    Article  Google Scholar 

  • Vilarrasa V, Silva O, Carrera J, Olivella S (2013) Liquid CO2 injection for geological storage in deep saline aquifers. Int J Greenhouse Gas Control 14:84–96. https://doi.org/10.1016/j.ijggc.2013.01.015

    Article  Google Scholar 

  • Wang PT, Wei YM, Yang B, Li JQ, Kang JN, Liu LC, Yu BY, Hou YB, Zhang X (2020) Carbon capture and storage in China’s power sector: optimal planning under the 2 °C constraint. Applied Energy 263:114694. https://doi.org/10.1016/j.apenergy.2020.114694

    Article  Google Scholar 

  • Wilcox J, Psarras PC, Liguori S (2017) Assessment of reasonable opportunities for direct air capture. Environ Res Lett 12(6):065001. https://doi.org/10.1088/1748-9326/aa6de5

    Article  Google Scholar 

  • Williamson P, Wallace DWR, Law CS, Boyd PW, Collos Y, Croot P, Denman K, Riebesell U, Takeda S, Vivian C (2012) Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process Saf Environ Prot 90(6):475–488. https://doi.org/10.1016/j.psep.2012.10.007

    Article  Google Scholar 

  • Xiang Y, Song CC, Li C, Yao ED, Yan W (2020) Characterization of 13Cr steel corrosion in simulated EOR-CCUS environment with flue gas impurities. Process Saf Environ Prot 140:124–136. https://doi.org/10.1016/j.psep.2020.04.051

    Article  Google Scholar 

  • Yan Y, Borhani TN, Subraveti SG, Pai KN, Prasad V, Rajendran A, Nkulikiyinka P, Asibor JO, Zhang Z, Shao D, Wang L, Zhang W, Yan Y, Ampomah W, You J, Wang M, Anthony EJ, Manovic V, Clough PT (2021) Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS) – a state-of-the-art review. Energy Environ Sci 14(12):6122–6157. https://doi.org/10.1039/d1ee02395k

    Article  Google Scholar 

  • Zhang S, Zhuang Y, Tao R, Liu L, Zhang L, Du J (2020) Multi-objective optimization for the deployment of carbon capture utilization and storage supply chain considering economic and environmental performance. J Clean Prod 270:122481. https://doi.org/10.1016/j.jclepro.2020.122481

    Article  Google Scholar 

  • Zhi K, Li Z, Wang B, Klemeš JJ, and Guo LH (2023). “A review of CO2 utilization and emissions reduction: from the perspective of the chemical engineering.” Process Saf Environ Protection. In press. https://doi.org/10.1016/j.psep.2023.02.046

Download references

Funding

The authors would like to thank the financial support provided by the National Key R&D Program of China (2020YFE0201400) and the National Natural Science Foundation of China (52270184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Xiaoping Jia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, F., Aviso, K.B. et al. Bi-objective Synthesis of CCUS System Considering Inherent Safety and Economic Criteria. Process Integr Optim Sustain 7, 1319–1331 (2023). https://doi.org/10.1007/s41660-023-00344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s41660-023-00344-9

Keywords