Abstract
Serratia spp., strain BRM 32114, is a plant growth-promoting rhizobacteria that show strong potential to solve two major challenges of upland rice production in a no-tillage system: initial vigor and grain yield improvement. No-till practices dictate the sustainability of cropping systems as they improve precipitation use, sequester C, mitigate atmospheric CO2 enrichment, restore soil health, and stimulate interest in crop diversity and rotation design. This study was intended to analyze the effect of the Serratia spp. on growth promotion and grain yield improvement in upland rice, under four N rates. Two field experiments were conducted during growing seasons 2015/2016 and 2016/2017, in two different experimental areas managed under a no-tillage system in the Brazilian Cerrado soil. The experimental design was a complete randomized block in a 4 × 2 factorial scheme, with four replications. Treatments comprised of four N fertilizer rates (0, 40, 80 and 120 kg N ha−1) with or without BRM 32114. In BRM 32114 treatment, rice seeds were microbiolized and bacterial suspension were sprayed at soil/plant in the field on the 7th and 15th DAS (day after sowing). Morphophysiological (gas exchange, shoot nutrients content and biomass production), and agronomic (grain yield and its components) traits were estimated. Results revealed increase in stomatal conductance (~ 20%); N, Ca and Mg (7, 11 and 9%) contents; shoot dry matter (8%); number of grain per plant (17%); mass of 1000 grains (2%) and yield (~ 22%) in BRM 32114-treated rice and cultivated in soil fertilized with 0, 40 and 80 kg N ha−1. However, the efficacy of this strain was reduced when combined with the highest rate of N (120 kg ha−1) added to the soil. It is possible to get higher yields levels of upland rice, cultivated under no tillage system, with the complimentary use of Serratia sp., strain BRM 32114, than the application of chemical fertilizers alone. The improvement in soil health could be extra benefit for fertilizer’ savings.
Similar content being viewed by others
References
Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University, 26, 1–20.
Araújo, A. E. S., Baldani, V. L. D., Galisa, P. S., Pereira, J. A., & Baldani, J. I. (2013). Response of traditional upland rice varieties to inoculation with selected diazotrophic bacteria isolated from rice cropped at the Northeast region of Brazil. Applied Soil Ecology, 64, 49–55.
Baldani, V. L. D., Baldani, J. I., & Döbereiner, J. (2000). Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biology and Fertility of Soils, 30, 485–491.
Baris, O., Sahin, F., Turan, M., Orhan, F., & Gulluce, M. (2014). Use of plant-growth-promoting rhizobacteria (PGPR) seed inoculation as alternative fertilizer inputs in wheat and barley production. Communications in Soil Science and Plant Analysis, 45, 2457–2467.
Bernier, J., Atlin, G. N., Et, A. L., Serraj, R., Kumar, A., & Spaner, D. (2008). Breeding upland rice for drought resistance. Journal of the Science of Food and Agriculture, 88, 927–939.
Berry, J., Beerling, D., & Franks, P. (2010). Stomata: Key players in the earth system, past and present. Current Opinion in Plant Biology, 13, 232–239.
Buresh, R. J., Reddy, K. R., & van Kessel, C. (2008). Nitrogen transformations in submerged soils. In J. S. Schepers & W. R. Raun (Eds.), Nitrogen in agricultural systems. Agronomy monograph, Madison (Vol. 49, pp 401–436).
De Freitas, J. R., & Germida, J. J. (1990). Plant growth promoting rhizobacteria for winter wheat. Canadian Journal of Microbiology, 36, 265–272.
Donagema, G. K., Campos, D. V. B., Calderano, S. B., & Teixeira, W. G. (2011). Manual de métodos de análise de solo (segunda ed.). Rio de Janeiro: Embrapa Solos.
Fageria, N. K. (2014). Nitrogen management in crop production. Boca Raton: CRC Press.
Fageria, N. K., Moreira, A., & Coelho, A. M. (2011). Yield and yield components of upland rice as influenced by nitrogen sources. Journal of Plant Nutrition, 34, 361–370.
Fernández-Bidondo, L., Silvani, V., Colombo, R., Pérgola, M., Bompadre, J., & Godeas, A. (2011). Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenobacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology & Biochemistry, 43, 1866–1872.
Filippi, M. C. C., Silva, G. B., Silva-Lobo, V. L., Cortes, M. M. C. B., Moraes, A. J. G., & Prabhu, A. S. (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58, 160–166.
Garcia de Salamone, I. E., Dobereiner, J., Urquiaga, S., & Boddey, R. M. (1996). Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biology and Fertility of Soils, 23, 249–256.
Gyaneshwar, P. G., Mathan, N., Reddy, P. M., Reinhold-Hurek, B., & Ladha, J. K. (2001). Endophytic colonization of rice b a diazotrophic strain of Serratia marcescens. Journal of Bacteriology, 183, 2634–2645.
Horie, T., Matsuura, S., Takai, T., Kuwasaki, K., Ohsumi, A., & Shiraiwa, T. (2006). Genotypic difference in canopy diffusive conductance measured by a new remote-sensing method and its association with the difference in rice yield potential. Plant, Cell & Environment, 29, 653–660.
Isawa, T., Yasuda, M., Awasaki, H., Minamisawa, K., Shinozaki, S., & Nakashita, H. (2010). Azospirillum sp. strain B510 enhances rice growth and yield. Microbes and Environments, 25, 58–61.
Kado, C. J., & Heskett, M. G. (1970). Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, 60, 969–976.
Karlidag, H., Esitken, A., Turan, M., & Sahin, F. (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae, 114, 16–20.
Kikuta, M., Yamamoto, Y., Pasolon, Y. B., Rembon, F. S., Miyazaki, A., & Makihara, D. (2016). How growth and yield of upland rice vary with topographic conditions: a case of slash-and-burn rice farming in South Konawe Regency, Southeast Sulawesi Province, Indonesia. Tropical Agriculture and Development, 60, 162–171.
Kuan, K. B., Othman, R., Rahim, K. A., & Shamsuddin, Z. H. (2016). Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One, 11, e0152478.
Kumar, V., & Ladha, J. K. (2011). Direct seeding of rice: recent developments and future research needs. Advances in Agronomy, 111, 297–396.
Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., & Van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: Retrospect and prospects. Advances in Agronomy, 87, 85–156.
Lopes, V. R. (2013). Melhoramento genético de cana-de-açúcar em associação com bactérias promotoras do crescimento vegetal. Dissertação, Universidade Federal do Paraná: Curitiba.
Lucas, J. A., Ramos-Solano, B., Montes, F., Ojeda, J., Megías, M., & Gutiérrez‐Mañero, F. J. (2009). Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crops Research, 114, 404–410.
Mäder, P., Kaiser, F., Adholeya, A., Singh, R., Uppal, H. S., Anil, K., et al. (2011). Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biology & Biochemistry, 43, 609–619.
Mantelin, S., & Touraine, B. (2004). Plant growth-promoting bacteria and nitrate availability: Impacts on root development and nitrate uptake. Journal of Experimental Botany, 55, 27–34.
Martins, B. E. (2015). Caracterização morfológica, bioquímica e molecular de isolados bacterianos antagonistas a Magnaporthe oryzae. 80 f. Dissertação, Universidade Federal de Goiás.
Muthukumarasamy, R., Cleenwerck, I., Revathi, G., Vadivelu, M., Janssens, D., Hoste, B., et al. (2005). Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Systematic and Applied Microbiology, 28, 277–286.
Nascente, A. S., Filippi, M. C. C., Lanna, A. C., Souza, A. C. A., Silva-Lobo, V. L., & Silva, G. B. (2017a). Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, 24, 2956–2965.
Nascente, A. S., Filippi, M. C. C., Lanna, A. C., Souza, A. C. A., Silva-Lobo, V. L., & Silva, G. B. (2017b). Effects of beneficial microorganisms on lowland rice development. Environmental Science and Pollution Research, 24, 25233–25242.
Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology & Biotechnology, 33, 197.
Ono, K., Maruyama, A., Kuwagata, T., Mano, M., Takimoto, T., Hayashi, K., et al. (2013). Canopy-scale relationships between stomatal conductance and photosynthesis in irrigated rice. Global Change Biology, 19, 2209–2220.
Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., et al. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169, 325–336.
Rangel, P. H. H., Neto, F. P. M., Fagundes, P. R. R., de Magalhaes Jr, A. M., de Morais, O. P., Schmidt, A. B., et al. (2010). Development of herbicide-tolerant irrigated rice cultivars Pesq. Agropecu. Bras., 45, 701–708.
Reeves, T. G., Waddington, S. R., Ortiz-Monasterio, I., Bänziger, M., & Cassaday, K. (2002). Removing nutritional limits to maize and wheat production: A developing country perspective. In I. R. Kennedy & A. Choudhury (Eds.), Biofertilizers in action (pp. 11–36). Canberra: Research and Development Corporation.
Rose, M. T., Phuong, T. L., Nhan, D. K., Cong, P. T., Hien, N. T., & Kennedy, I. R. (2014). Up to 52% N fertilizer replaced by biofertilizer in lowland rice via farmer participatory research. Agronomy for Sustainable Development, 34, 857–868.
Saharan, B. S., & Nehra, V. (2011). Plant-growth-promoting rhizobacteria: A critical review. Life Sciences and Medicine Research, 21, 1–30.
SAS. (1999). Procedure guide for personal computers (Quinta ed.). Cary: SAS Institute.
Shaharoona, B., Naveed, M., Arshad, M., & Zahir, Z. A. (2008). Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Applied Microbiology and Biotechnology, 79, 147–155.
Silva, R. O., Barioni, L. G., Zanett Albertini, T., Eory, V., Toop, C. F. E., Fernandes, F. A., et al. (2016). Developing a nationally appropriate mitigation measure from the greenhouse gas GHG abatement potential from livestock production in the Brazilian Cerrado. Agricultural Systems, 140, 48–55.
Sousa, D. M. G., & Lobato, E. (2004). Cerrado: correção do solo e adubação (segunda ed.). Brasília: Embrapa Cerrados.
Souza, R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419.
Spaepen, S., Vanderleyden, J., & Okon, Y. (2009). Plant growth-promoting actions of rhizobacteria. Advances in Botanical Research, 51, 284–320.
Sperandio, E. M., Vale, H. M. M., Reis, M. S., Cortes, M. V. C. B., Lanna, A. C., & Filippi, M. C. C. (2017). Evaluation of rhizobacteria in upland rice in Brazil: Growth promotion and interaction of induced defense responses against leaf blast (Magnaporthe oryzae). Acta Physiologiae Plantarum, 39, 259.
Tajini, F., Trabelsi, M., & Drevon, J. J. (2012). Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbi-otic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 19, 157–163.
Yao, L. X., Wu, Z. S., Zheng, Y. Y., Kaleem, I., & Li, C. (2010). Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology, 46, 49–54.
Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., & Arshad, M. (2018). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of pea (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18, 958–963.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
No content conflict of interest.
Rights and permissions
About this article
Cite this article
Nascente, A.S., Lanna, A.C., de Sousa, T.P. et al. N Fertilizer Dose-Dependent Efficiency of Serratia spp. for Improving Growth and Yield of Upland Rice (Oryza sativa L.). Int. J. Plant Prod. 13, 217–226 (2019). https://doi.org/10.1007/s42106-019-00049-5
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s42106-019-00049-5