Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Chemically inducible chromosome evolution of Corynebacterium glutamicum for producing 4-hydroxyisoleucine

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

4-Hydroxyisoleucine (4-HIL) holds potential value in the treatment of diabetes. It can be produced by expressing the exogenous isoleucine dioxygenase gene ido in L-isoleucine (Ile) producing Corynebacterium glutamicum strains. But the stable expression of ido on plasmids relies on the usage of antibiotics. To make the harboring of ido independent of plasmid, this study developed a chromosome-engineered strain for synthesizing 4-HIL directly from glucose. First, the ido-cat-ido expressing cassette was inserted into the chromosome of C. glutamicum, and the copy number of ido was increased through chemically inducible chromosome evolution (CIChE). After successive rounds of CIChE by increasing chloramphenicol concentration, 7 copies of ido were integrated in the chromosome of C. glutamicum SE04, and the 4-HIL production reached 20.3 ± 4.99 g/L, 3.5-fold higher than the initial strain SC12 harboring two-copies of ido. To cease further homologous recombination, recA was deleted in CIChE strains, but cell growth and 4-HIL production were damaged. Notably, the stability of chromosomally inserted genes in the evolved strain SE04 was confirmed. Ultimately, the evolved C. glutamicum SE04 strain produced 30.3 g/L of 4-HIL in a 2-L bioreactor. This study established a plasmid-free strain of C. glutamicum for 4-HIL production, offering new insights into utilizing multi-copy integration methods for producing other valuable biochemical substances in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data associated with this work is embedded within the manuscript.

References

  1. Ong KL, Stafford LK, McLaughlin SA, et al. Global, regional, and National burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021. Lancet. 2023;402(10397):203–34. https://doi.org/10.1016/S0140-6736(23)01301-6.

    Article  Google Scholar 

  2. Neelakantan N, Narayanan M, de Souza RJ, van Dam RM. Effect of Fenugreek (Trigonella foenum-graecum L.) intake on glycemia: a meta-analysis of clinical trials. Nutr J. 2014;13:7. https://doi.org/10.1186/1475-2891-13-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zafar MI, Gao F. 4-Hydroxyisoleucine: a potential new treatment for type 2 diabetes mellitus. BioDrugs. 2016;30(4):255–62. https://doi.org/10.1007/s40259-016-0177-2.

    Article  CAS  PubMed  Google Scholar 

  4. Haeri MR, Limaki HK, White CJ, White KN. Non-insulin dependent anti-diabetic activity of (2S, 3R, 4S) 4-hydroxyisoleucine of Fenugreek (Trigonella foenum graecum) in streptozotocin-induced type I diabetic rats. Phytomedicine. 2012;19(7):571–4. https://doi.org/10.1016/j.phymed.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  5. Mohammad-Sadeghipour M, Mahmoodi M, Noroozi Karimabad M, Mirzaei MR, Hajizadeh MR. Diosgenin and 4-hydroxyisoleucine from Fenugreek are regulators of genes involved in lipid metabolism in the human colorectal cancer cell line SW480. Cell J. 2021;22(4):514–22. https://doi.org/10.22074/cellj.2021.6751.

    Article  PubMed  Google Scholar 

  6. Becker J, Rohles CM, Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122–41. https://doi.org/10.1016/j.ymben.2018.07.008.

    Article  CAS  PubMed  Google Scholar 

  7. Tsuge Y, Matsuzawa H. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World J Microbiol Biotechnol. 2021;37(3):49. https://doi.org/10.1007/s11274-021-03007-4.

    Article  CAS  PubMed  Google Scholar 

  8. Kodera T, Smirnov SV, Samsonova NN, Kozlov YI, Koyama R, Hibi M, Ogawa J, Yokozeki K, Shimizu S. A novel L-isoleucine hydroxylating enzyme, L-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S,3R,4S)-4-hydroxyisoleucine. Biochem Biophys Res Commun. 2009;390(3):506–10. https://doi.org/10.1016/j.bbrc.2009.09.126.

    Article  CAS  PubMed  Google Scholar 

  9. Shi F, Niu T, Fang H. 4-Hydroxyisoleucine production of Recombinant Corynebacterium glutamicum Ssp. Lactofermentum under optimal corn steep liquor limitation. Appl Microbiol Biotechnol. 2015;99(9):3851–63. https://doi.org/10.1007/s00253-015-6481-9.

    Article  CAS  PubMed  Google Scholar 

  10. Shi F, Zhang S, Li Y, Lu Z. Enhancement of substrate supply and Ido expression to improve 4-hydroxyisoleucine production in Recombinant Corynebacterium glutamicum Ssp. Lactofermentum. Appl Microbiol Biotechnol. 2019;103(10):4113–24. https://doi.org/10.1007/s00253-019-09791-2.

    Article  CAS  PubMed  Google Scholar 

  11. Shi F, Fan Z, Zhang S, Wang Y, Tan S, Li Y. Optimization of ribosomal binding site sequences for gene expression and 4-hydroxyisoleucine biosynthesis in Recombinant Corynebacterium glutamicum. Enzyme Microb Technol. 2020;140:109622. https://doi.org/10.1016/j.enzmictec.2020.109622.

    Article  CAS  PubMed  Google Scholar 

  12. Ma F, Liu H, Shi F, Xiang Y, Fan Z. Quorum sensing-mediated dynamic regulation of 4-hydroxyisoleucine biosynthesis in Corynebacterium glutamicum. World J Microbiol Biotechnol. 2023;39(7):181. https://doi.org/10.1007/s11274-023-03633-0.

    Article  CAS  PubMed  Google Scholar 

  13. Xiang Y, Chen R, Shi F, Lai W. Exploring L-isoleucine riboswitches for enhancing 4-hydroxyisoleucine production in Corynebacterium glutamicum. Biotechnol Lett. 2023;45(9):1169–81. https://doi.org/10.1007/s10529-023-03407-6.

    Article  CAS  PubMed  Google Scholar 

  14. Tyo KE, Ajikumar PK, Stephanopoulos G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol. 2009;27(8):760–5. https://doi.org/10.1038/nbt.1555.

    Article  CAS  PubMed  Google Scholar 

  15. Cui Z, Jiang Z, Zhang J, Zheng H, Jiang X, Gong K, Liang Q, Wang Q, Qi Q. Stable and efficient biosynthesis of 5-aminolevulinic acid using plasmid-free Escherichia coli. J Agric Food Chem. 2019;67(5):1478–83. https://doi.org/10.1021/acs.jafc.8b06496.

    Article  CAS  PubMed  Google Scholar 

  16. Xiong T, Bai Y, Fan TP, Zheng X, Cai Y. Biosynthesis of phenylpyruvic acid from l-phenylalanine using chromosomally engineered Escherichia coli. Biotechnol Appl Biochem. 2022;69(5):1909–16. https://doi.org/10.1002/bab.2256.

    Article  CAS  PubMed  Google Scholar 

  17. Xu X, Rao ZM, Xu JZ, Zhang WG. Enhancement of l-pipecolic acid production by dynamic control of substrates and multiple copies of the PipA gene in the Escherichia coli genome. ACS Synth Biol. 2022;11(2):760–9. https://doi.org/10.1021/acssynbio.1c00467.

    Article  CAS  PubMed  Google Scholar 

  18. Hu J, Tan Y, Li Y, Hu X, Xu D, Wang X. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid. 2013;70(3):303–13. https://doi.org/10.1016/j.plasmid.2013.07.001.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun. 2017;8:15179. https://doi.org/10.1038/ncomms15179.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen R, Shi F, Xiang Y, Lai W, Ji G. Establishment of CRISPR-Cpf1-assisted gene editing tool and engineering of 4-hydroxyisoleucine biosynthesis in Corynebacterium glutamicum. World J Microbiol Biotechnol. 2023;39(10):266. https://doi.org/10.1007/s11274-023-03705-1.

    Article  CAS  PubMed  Google Scholar 

  21. Chen R, Xiang Y, Shi F. Comparative transcriptome analysis of global effect of Ddh and lyse deletion on 4-hydroxyisoleucine production in Corynebacterium glutamicum. Syst Microbiol Biomanuf. 2022;2:542–54. https://doi.org/10.1007/s43393-022-00085-9.

    Article  CAS  Google Scholar 

  22. Lai W, Shi F, Tan S, Liu H, Li Y, Xiang Y. Dynamic control of 4-hydroxyisoleucine biosynthesis by multi-biosensor in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2022;106(13–16):5105–21. https://doi.org/10.1007/s00253-022-12034-6.

    Article  CAS  PubMed  Google Scholar 

  23. Hu C, Shi F, Chen R. Rearrangement in the regulation of SigD gene expression promotes 4-hydroxyisoleucine production in Corynebacterium glutamicum. Syst Microbiol Biomanuf. 2024. https://doi.org/10.1007/s43393-024-00277-5.

    Article  Google Scholar 

  24. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero–design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng. 2011;13(2):159–68. https://doi.org/10.1016/j.ymben.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  25. Kitade Y, Hashimoto R, Suda M, Hiraga K, Inui M. Production of 4-hydroxybenzoic acid by an aerobic growth-arrested bioprocess using metabolically engineered Corynebacterium glutamicum. Appl Environ Microbiol. 2018;84(6):e02587–17. https://doi.org/10.1128/AEM.02587-17.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li C, Swofford CA, Rückert C, Sinskey AJ. Optimizing recombineering in Corynebacterium glutamicum. Biotechnol Bioeng. 2021;118(6):2255–64. https://doi.org/10.1002/bit.27737.

    Article  CAS  PubMed  Google Scholar 

  27. Li C, Swofford CA, Rückert C, Chatzivasileiou AO, Ou RW, Opdensteinen P, Luttermann T, Zhou K, Stephanopoulos G, Jones Prather KL, Zhong-Johnson EZL, Liang S, Zheng S, Lin Y, Sinskey AJ. Heterologous production of α-carotene in Corynebacterium glutamicum using a multi-copy chromosomal integration method. Bioresour Technol. 2021;341:125782. https://doi.org/10.1016/j.biortech.2021.125782.

    Article  CAS  PubMed  Google Scholar 

  28. Hutton CA, Southwood TJ, Turner JJ. Inhibitors of lysine biosynthesis as antibacterial agents. Mini Rev Med Chem. 2003;3(2):115–27. https://doi.org/10.2174/1389557033405359.

    Article  CAS  PubMed  Google Scholar 

  29. El Shafey HM, Ghanem S, Guyonvarch A. Cloning of RecA gene of Corynebacterium glutamicum and phenotypic complementation of Escherichia coli Recombinant deficient strain. World J Microb Biot. 2009;25:367–73. https://doi.org/10.1007/s11274-008-9900-6.

    Article  CAS  Google Scholar 

  30. Nishimura T, Teramoto H, Inui M, Yukawa H. Gene expression profiling of Corynebacterium glutamicum during anaerobic nitrate respiration: induction of the SOS response for cell survival. J Bacteriol. 2011;193(6):1327–33. https://doi.org/10.1128/jb.01453-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cox MM. Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol. 2007;42(1):41–63. https://doi.org/10.1080/10409230701260258.

    Article  CAS  PubMed  Google Scholar 

  32. Michel B, Sinha AK, Leach DRF. Replication fork breakage and restart in Escherichia coli. Microbiol Mol Biol Rev. 2018;82(3):e00013–18. https://doi.org/10.1128/MMBR.00013-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Le Dall MT, Nicaud JM, Gaillardin C. Multiple-copy integration in the yeast Yarrowia lipolytica. Curr Genet. 1994;26(1):38–44. https://doi.org/10.1007/BF00326302.

    Article  PubMed  Google Scholar 

  34. Zhang C, Li Y, Ma J, Liu Y, He J, Li Y, Zhu F, Meng J, Zhan J, Li Z, Zhao L, Ma Q, Fan X, Xu Q, Xie X, Chen N. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering. Metab Eng. 2018;49:287–98. https://doi.org/10.1016/j.ymben.2018.09.008.

    Article  CAS  PubMed  Google Scholar 

  35. Choi JW, Yim SS, Kim MJ, Jeong KJ. Enhanced production of Recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements). Microb Cell Fact. 2015;14:207. https://doi.org/10.1186/s12934-015-0401-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

FS conceived and designed research. WC and RC conducted experiments. WC and FS analyzed data. FS, WC and RC wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Feng Shi.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Chen, R. & Shi, F. Chemically inducible chromosome evolution of Corynebacterium glutamicum for producing 4-hydroxyisoleucine. Syst Microbiol and Biomanuf 5, 1252–1260 (2025). https://doi.org/10.1007/s43393-025-00350-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s43393-025-00350-7

Keywords