Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus

Abstract

The innate immune system contributes to the earliest phase of the host defense against foreign organisms and has both soluble and cellular pattern recognition receptors for microbial products. Two important members of this receptor group, CD14 and the Toll-like receptor (TLR) pattern recognition receptors, are essential for the innate immune response to components of Gram-negative and Gram-positive bacteria, mycobacteria, spirochetes and yeast. We now find that these receptors function in an antiviral response as well. The innate immune response to the fusion protein of an important respiratory pathogen of humans, respiratory syncytial virus (RSV), was mediated by TLR4 and CD14. RSV persisted longer in the lungs of infected TLR4-deficient mice compared to normal mice. Thus, a common receptor activation pathway can initiate innate immune responses to both bacterial and viral pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Viral proteins stimulate cytokine secretion from PBMC and monocytes.
Figure 2: Cytokine-stimulating activity of RSV F protein is trypsin-sensitive.
Figure 3: Monoclonal antibodies specifically block RSV F cytokine stimulating activity.
Figure 4: CD14 knockout mice do not respond to RSV F protein.
Figure 5: TLR4 is required for macrophage responses to LPS and RSV F protein.
Figure 6: Live RSV persists longer in TLR4-deficient than in control mice.

Similar content being viewed by others

References

  1. Ulevitch, R. J. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv. Immunol. 53, 267–289 (1993).

    Article  CAS  Google Scholar 

  2. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  Google Scholar 

  3. Pugin, J. et al. CD14 is a pattern recognition receptor. Immunity 1, 509–516 (1994).

    Article  CAS  Google Scholar 

  4. Savedra, R., Jr., Delude, R. L., Ingalls, R. R., Fenton, M. J. & Golenbock, D. T. Mycobacterial lipoarabinomannan recognition requires a receptor that shares components of the endotoxin signaling system. J. Immunol. 157, 2549– 2554 (1996).

    CAS  PubMed  Google Scholar 

  5. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J. & Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274, 10689–10692 (1999).

    Article  CAS  Google Scholar 

  6. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  Google Scholar 

  7. Yang, R. -B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284– 288 (1998).

    Article  CAS  Google Scholar 

  8. Kirschning, C. J., Wesche, H., Merrill Ayres, T. & Rothe, M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide . J. Exp. Med. 188, 2091– 2097 (1998).

    Article  CAS  Google Scholar 

  9. Heine, H. et al. Cutting edge: cells that carry a null allele for Toll-like receptor 2 are capable of responding to endotoxin. J. Immunol. 162, 6971–6975 (1999).

    CAS  PubMed  Google Scholar 

  10. Yoshimura, A. et al. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163, 1–5 (1999).

    CAS  PubMed  Google Scholar 

  11. Means, T. K. et al. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for toll-like receptors. J. Immunol. 163, 6748–6755 ( 1999).

    CAS  Google Scholar 

  12. Means, T. K. et al. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927 (1999).

    CAS  PubMed  Google Scholar 

  13. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274, 17406–17409 ( 1999).

    Article  CAS  Google Scholar 

  14. Hirschfeld, M. et al. Cutting edge: inflammatory signaling by borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J. Immunol. 163, 2382–2386 (1999).

    CAS  PubMed  Google Scholar 

  15. Lien, E. et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 33419–33425 (1999).

    Article  CAS  Google Scholar 

  16. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  Google Scholar 

  17. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285, 736– 739 (1999).

    Article  CAS  Google Scholar 

  18. Heilman, C. A. From the National Institute of Allergy and Infectious Diseases and the World Health Organization. Respiratory syncytial and parainfluenza viruses. J. Infect. Dis. 161, 402–406 (1990).

    Article  CAS  Google Scholar 

  19. Hall, C. B. et al. Respiratory syncytial viral infection in children with compromised immune function. N. Engl. J. Med. 315, 77 –81 (1986).

    Article  CAS  Google Scholar 

  20. Alwan, W. H., Kozlowska, W. J. & Openshaw, P. J. Distinct types of lung disease caused by functional subsets of antiviral T cells. J. Exp. Med. 179, 81–89 (1994).

    Article  CAS  Google Scholar 

  21. Prince, G. A. et al. Enhancement of respiratory syncytial virus pulmonary pathology in cotton rats by prior intramuscular inoculation of formalin-inactiva ted virus. J. Virol. 57, 721– 728 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Waris, M. E., Tsou, C., Erdman, D. D., Day, D. B. & Anderson, L. J. Priming with live respiratory syncytial virus (RSV) prevents the enhanced pulmonary inflammatory response seen after RSV challenge in BALB/c mice immunized with formalin-inactivated RSV. J. Virol. 71, 6935–6939 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Graham, B. S. et al. Priming immunization determines T helper cytokine mRNA expression patterns in lungs of mice challenged with respiratory syncytial virus. J. Immunol. 151, 2032–2040 (1993).

    CAS  PubMed  Google Scholar 

  24. Anderson, L. J. & Heilman, C. A. Protective and disease-enhancing immune responses to respiratory syncytial virus. J. Infect. Dis. 171, 1–7 (1995).

    Article  CAS  Google Scholar 

  25. Cavaillon, J. M. & Haeffner-Cavaillon, N. Polymyxin-B inhibition of LPS-induced interleukin-1 secretion by human monocytes is dependent upon the LPS origin. Mol. Immunol. 23, 965 –969 (1986).

    Article  CAS  Google Scholar 

  26. Poltorak, A. et al. Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science 282, 2085 –2088 (1998).

    Article  CAS  Google Scholar 

  27. Hoshino, K. et al. Cutting Edge: Toll-Like Receptor 4 (TLR4)-Deficient Mice Are Hyporesponsive to Lipopolysaccharide: Evidence for TLR4 as the Lps Gene Product . J. Immunol. 162, 3749– 3752 (1999).

    CAS  PubMed  Google Scholar 

  28. Qureshi, S. T. et al. Endotoxin-tolerant Mice Have Mutations in Toll-like Receptor 4 (Tlr4). J. Exp. Med. 189, 615– 625 (1999).

    Article  CAS  Google Scholar 

  29. Haynes, L. M. et al. Involvement of Toll-like Receptor-4 in Innate Immunity to Respiratory Syncytial Virus, J. Immunol. (submitted, 2000).

  30. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA 95, 588–593 (1998).

    Article  CAS  Google Scholar 

  31. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  32. Chaudhary, P. M. et al. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91, 4020–4027 ( 1998).

    CAS  PubMed  Google Scholar 

  33. Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Ann. Rev. Cell Dev. Biol. 12, 393–416 (1996).

    Article  CAS  Google Scholar 

  34. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 ( 1996).

    Article  CAS  Google Scholar 

  35. Meister, M., Lemaitre, B. & Hoffmann, J. A. Antimicrobial peptide defense in Drosophila. Bioessays 19, 1019–1026 (1997).

    Article  CAS  Google Scholar 

  36. Williams, M. J., Rodriguez, A., Kimbrell, D. A. & Eldon, E. D. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J. 16, 6120– 6130 (1997).

    Article  CAS  Google Scholar 

  37. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  Google Scholar 

  38. Solomon, K. R. et al. Heterotrimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both In vivo and In vitro responses to lipopolysaccharide. J. Clin. Invest. 102, 2019–2027 (1998).

    Article  CAS  Google Scholar 

  39. Walsh, E. E., Brandriss, M. W. & Schlesinger, J. J. Purification and characterization of the respiratory syncytial virus fusion protein. J. Gen. Virol. 66, 409–415 (1985).

    Article  CAS  Google Scholar 

  40. Graham, B. S., Perkins, M. D., Wright, P. F. & Karzon, D. T. Primary respiratory syncytial virus infection in mice. J. Med. Virol. 26, 153–162 ( 1988).

    Article  CAS  Google Scholar 

  41. Tripp, R. A., Jones, L., Anderson, L. J. & Brown, M. P. CD40 Ligand (CD154) Enhances the Th1 and Antibody Responses to Respiratory Syncytial Virus in the BALB/c Mouse. J. Immunol. 164 , 5913–5921 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health RO1AI31628 and RO1AI39576 (to R.W.F.), RO1GM54060 and RO1AI38515 (to D.T.G.), and RO1DK50305 (to D.T.G. and M.W.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn A. Kurt-Jones.

Supplementary information

Web Figure 1

Lectin purified RSV F protein analyzed by SDS-PAGE under non-reducing conditions. Protein bands were visualized by silver staining. RSV F exists in several naturally occurring forms, including a 145 kD trimer and a 70 kD dimer. F dimers consist of 48 kD and 28 kD components. (MW, molecular weight markers.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurt-Jones, E., Popova, L., Kwinn, L. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1, 398–401 (2000). https://doi.org/10.1038/80833

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/80833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing