Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A general mechanism for transcriptional synergy by eukaryotic activators

Abstract

ONE of the important regulatory concepts to emerge from studies of eukaryotic gene expression is that RNA polymerase II promo-ters and their upstream activators are composed of functional mod-ules whose synergistic action regulates the transcriptional activity of a nearby gene1-3. Biochemical analysis of synergy by ZEBRA, a non-acidic activator of the Epstein-Barr virus (EBV) lytic cycle4, showed that the synergistic transcriptional effect of promoter sites and activation modules correlates with assembly of the TFIID: TFIIA (DA) complex in DNase I footprinting and gel shift assays. The activator-dependent DA complex differs from a basal DA complex by its ability to bind TFIIB stably in an interaction regulated by TATA-binding protein-associated factors (TAFs). TFIIB enhances the degree of synergism by increasing complex stability. Similar findings were made with the acidic activator GAL4-VP16. Our data suggest a unifying mechanism for gene t To whom correspondence should be addressed. 254 activation and synergy by acidic and non-acidic activators, and indicate that synergy is manifested at the earliest stage of preinitia-tion complex assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chi, T. & Carey, M. Molec. cell. Biol. 13, 7045–7055 (1993).

    Article  CAS  Google Scholar 

  2. Gerster, T., Balmaceda, C. G. & Roeder, R. G. EMBO J. 9, 1635–1643 (1990).

    Article  CAS  Google Scholar 

  3. Schaffner, G., Schirm, S., Muller-Baden, B., Weber, F. & Schaffner, W. J. molec. Biol. 201, 81–90 (1988).

    Article  CAS  Google Scholar 

  4. Miller, G. J. infect. Dis. 161, 833–844 (1990).

    Article  CAS  Google Scholar 

  5. Lieberman, P. M. & Berk, A. J. Genes Dev. 8, 995–1006 (1994).

    Article  CAS  Google Scholar 

  6. Hori, R. & Carey, M. Curr. Opin. Genet. Dev. 4, 236–244 (1994).

    Article  CAS  Google Scholar 

  7. Miller, G. et al. J. Virol. 67, 7472–7481 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Carey, M., Lin, Y. S., Green, M. R. & Ptashne, M. Nature 345, 361–364 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Carey, M. et al. J. Virol. 66, 4803–4813 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Dyke, M. W. & Sawadogo, M. Molec. cell Biol. 10, 3415–3420 (1990).

    Article  CAS  Google Scholar 

  11. Horikoshi, M., Hai, T., Lin, Y. S., Green, M. R. & Roeder, R. G. Cell 54, 1033–1042 (1988).

    Article  CAS  Google Scholar 

  12. Horikoshi, M., Carey, M. F., Kakidani, H. & Roeder, R. G. Cell 54, 665–669 (1988).

    Article  CAS  Google Scholar 

  13. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Cell 56, 549–561 (1989).

    Article  CAS  Google Scholar 

  14. Lieberman, P. Molec. cell Biol. 14, 8365–8375 (1994).

    Article  CAS  Google Scholar 

  15. Lieberman, P. M. & Berk, A. J. Genes Dev. 5, 2441–2454 (1991).

    Article  CAS  Google Scholar 

  16. Goodrich, J. A., Hoey, T., Thut, C. J., Admon, A. & Tjian, R. Cell 75, 519–530 (1993).

    Article  CAS  Google Scholar 

  17. Lin, Y. S. & Green, M. R. Cell 64, 971–981 (1991).

    Article  CAS  Google Scholar 

  18. Tjian, R. & Maniatis, T. Cell 77, 5–8 (1994).

    Article  CAS  Google Scholar 

  19. Meisterernst, M., Roy, A. L., Lieu, H. M. & Roeder, R. G. Cell 66, 981–993 (1991).

    Article  CAS  Google Scholar 

  20. Choy, B. & Green, M. R. Nature 366, 531–536 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Wang, W., Gralla, J. D. & Carey, M. Genes Dev. 6, 1716–1727 (1992).

    Article  CAS  Google Scholar 

  22. Klein, C. & Struhl, K. Science 266, 280–282 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Colgan, J. & Manley, J. L. Genes Dev. 6, 304–315 (1992).

    Article  CAS  Google Scholar 

  24. Adams, C. C. & Workman, J. L. Molec. cell. Biol. 15, 1405–1421 (1995).

    Article  CAS  Google Scholar 

  25. Taylor, I. C., Workman, J. L., Schuetz, T. J. & Kingston, R. E. Genes Dev. 5, 1285–1298 (1991).

    Article  CAS  Google Scholar 

  26. Zhou, Q., Lieberman, P. M., Boyer, T. G. & Berk, A. J. Genes Dev. 6, 1964–1974 (1992).

    Article  CAS  Google Scholar 

  27. Ozer, J. et al. Genes Dev. 8, 2324–2335 (1994).

    Article  CAS  Google Scholar 

  28. Ha, I., Lane, W. S. & Reinberg, D. Nature 352, 689–695 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Ha, I. et al. Genes Dev. 7, 1021–1032 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, T., Lieberman, P., Ellwood, K. et al. A general mechanism for transcriptional synergy by eukaryotic activators. Nature 377, 254–257 (1995). https://doi.org/10.1038/377254a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/377254a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing