Abstract
Necroptosis is a form of programmed cell death that depends on the activation of receptor interacting protein kinase-1 (RIPK1) and RIPK3 by receptors such as tumor necrosis factor (TNF) receptor-1. Structural studies indicate that activation of RIPK3 by RIPK1 involves the formation of oligomers via interactions of the RIP homotypic interaction motif (RHIM) domains shared by both proteins; however, the molecular mechanisms by which this occurs are not fully understood. To gain insight into this process, we constructed versions of RIPK3 that could be induced to dimerize or oligomerize in response to a synthetic drug. Using this system, we find that although the formation of RIPK3 dimers is itself insufficient to trigger cell death, this dimerization seeds a RHIM-dependent complex, the propagation and stability of which is controlled by caspase-8 and RIPK1. Consistent with this idea, we find that chemically enforced oligomerization of RIPK3 is sufficient to induce necroptosis, independent of the presence of the RHIM domain, TNF stimulation or RIPK1 activity. Further, although RIPK1 contributes to TNF-mediated RIPK3 activation, we find that RIPK1 intrinsically suppresses spontaneous RIPK3 activation in the cytosol by controlling RIPK3 oligomerization. Cells lacking RIPK1 undergo increased spontaneous RIPK3-dependent death on accumulation of the RIPK3 protein, while cells containing a chemically inhibited or catalytically inactive form of RIPK1 are protected from this form of death. Together, these data indicate that RIPK1 can activate RIPK3 in response to receptor signaling, but also acts as a negative regulator of spontaneous RIPK3 activation in the cytosol.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Abbreviations
- AP1:
-
homodimerization drug
- cFLIPL:
-
cellular flice-like inhibitory protein, long isoform
- DAI:
-
DNA-dependent activator of interferon regulatory factor
- DD:
-
destabilization domain
- FADD:
-
Fas-associated protein with a death domain
- FKBP:
-
FK506-binding protein
- FV:
-
FKBPF36V point mutant
- MEF:
-
mouse embryonic fibroblast
- MLKL:
-
mixed-lineage kinase-like
- Nec1:
-
Necrostatin-1
- RHIM:
-
RIP homotypic interaction motif
- RIPK:
-
receptor-interacting protein kinase
- TNF:
-
tumor necrosis factor
- TNFR1:
-
TNF receptor-1
- TNFR-Fc:
-
TNFR1–immunoglobulin Fc fusion protein
- zVAD:
-
Z-val-ala-asp-(O-methlylated)-fluoromethylketone
References
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G . Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11: 700–714.
Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W . Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 1997; 9: 801–808.
Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008; 4: 313–321.
Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 2004; 279: 10822–10828.
Cho YS, Challa S, Moquin D, Genga R, Ray TD . Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137: 1112–1123.
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009; 325: 332–336.
He S, Wang L, Miao L, Wang T, Du F, Zhao L et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 2009; 137: 1100–1111.
Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 2010; 17: 922–930.
Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci USA 2013; 110: E3109–E3118.
He S, Liang Y, Shao F, Wang X . Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA 2011; 108: 20054–20059.
Upton JW, Kaiser WJ, Mocarski ES . DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 2012; 11: 290–297.
Upton JW, Kaiser WJ, Mocarski ES . Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 2010; 7: 302–313.
Robinson N, McComb S, Mulligan R, Dudani R, Krishnan L, Sad S et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 2012; 13: 954–962.
Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 2011; 35: 908–918.
Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P . The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998; 8: 297–303.
Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.
Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 2012; 150: 339–350.
Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011; 43: 449–463.
Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011; 43: 432–448.
Chen W, Zhou Z, Li L, Zhong CQ, Zheng X, Wu X et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J Biol Chem 2013; 288: 16247–16261.
Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 2013; 23: 994–1006.
Sun L, Wang H, Wang Z, He S, Chen S, Liao D et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012; 148: 213–227.
Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 2012; 109: 5322–5327.
Geserick P, Hupe M, Moulin M, Wong WW, Feoktistova M, Kellert B et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 2009; 187: 1037–1054.
Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011; 471: 363–367.
Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 2011; 471: 368–372.
Clackson T, Yang W, Rozamus LW, Hatada M, Amara JF, Rollins CT et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 1998; 95: 10437–10442.
Oberst A, Pop C, Tremblay AG, Blais V, Denault JB, Salvesen GS et al. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem 2010; 285: 16632–16642.
Pop C, Oberst A, Drag M, Van Raam BJ, Riedl SJ, Green DR et al. FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 2011; 433: 447–457.
Chang DW, Yang X . Activation of procaspases by FK506 binding protein-mediated oligomerization. Sci STKE 2003; 2003: PL1.
Vanden Berghe T, van Loo G, Saelens X, Van Gurp M, Brouckaert G, Kalai M et al. Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J Biol Chem 2004; 279: 7925–7933.
Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep 2012; 1: 401–407.
Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, Wandless TJ . A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 2006; 126: 995–1004.
Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 2014; 343: 1357–1360.
Wu X-N, Yang Z-H, Wang X-K, Zhang Y, Wan H, Song Y et al. Distinct roles of RIP1–RIP3 hetero- and RIP3–RIP3 homo-interaction in mediating necroptosis. Cell Death Differ 2014 e-pub ahead of print 6 June 2014; doi:10.1038/cdd.2014.77.
Feoktistova M, Geserick P, Panayotova-Dimitrova D, Leverkus M . Pick your poison: the Ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle 2012; 11: 460–467.
Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 2013; 39: 443–453.
Acknowledgements
We thank Dr. Dan Stetson and Dr. Ram Savan, and their groups, for moral and material support. We also thank Dr. Stetson and Dr. David Rawlings for providing pRRL lentiviral constructs, Drs Dario Vignali and Warren Alexander for providing antibodies and Dr. Christopher Dillon for preparing RIPK1/3 DKO MEFs. We also thank Dr. Jiahuai Han for helpful discussions and input. This work was supported by NIH grant RAI108685A, Royalty Research Fund grant 65-0062 and UW Diabetes Research Center grant P30 DK017047, to AO. SO is supported by an NIH training grant 1T32AI106677-01 to the Department of Immunology of the University of Washington.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Edited by G Melino
Supplementary Information accompanies this paper on Cell Death and Differentiation website
Rights and permissions
About this article
Cite this article
Orozco, S., Yatim, N., Werner, M. et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ 21, 1511–1521 (2014). https://doi.org/10.1038/cdd.2014.76
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/cdd.2014.76
This article is cited by
-
PRMT5-mediated regulatory arginine methylation of RIPK3
Cell Death Discovery (2023)
-
HSPA8 acts as an amyloidase to suppress necroptosis by inhibiting and reversing functional amyloid formation
Cell Research (2023)
-
Vemurafenib inhibits necroptosis in normal and pathological conditions as a RIPK1 antagonist
Cell Death & Disease (2023)
-
ADAR1 mutation causes ZBP1-dependent immunopathology
Nature (2022)
-
Membrane permeabilization is mediated by distinct epitopes in mouse and human orthologs of the necroptosis effector, MLKL
Cell Death & Differentiation (2022)