Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
Finite island model for organelle and nuclear genes in plants
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1993

Finite island model for organelle and nuclear genes in plants

  • R J Petit1,
  • A Kremer1 &
  • D B Wagner2 

Heredity volume 71, pages 630–641 (1993)Cite this article

  • 1181 Accesses

  • 167 Citations

  • Metrics details

Abstract

Recurrence equations for genetic diversities and differentiation were developed for hermaphrodite plant species in an island model of population structure. This was made possible by the definitions of diversities at all hierarchical levels from gamete to total population and by the definition of migration rates specific to plants for both nuclear and cytoplasmic genomes. Mating system was also incorporated. Numerical computations were used to compare equilibrium values of differentiation obtained with our equations with those predicted by classical formulas. We show that the differences (sometimes high) result from the interpretations of the definition of gene diversity in a population of finite size. We interpret it as the probability that two genes sampled with replacement are different alleles (instead of without replacement). The effects of several parameters (ploidy level, mode of inheritance, outcrossing rate, population size) on genetic subdivision were evaluated. Contrary to the situation in animals, plant migration is intrinsically asymmetrical because a gene transmitted to the next generation through the male gamete may migrate in the pollen grain and in the seed, whereas a gene transmitted through the female gamete can migrate only in the seed. As a consequence, mode of inheritance (in the case of cytoplasmic genes) and outcrossing rate have strong impacts on subdivision, especially when pollen migration is larger than seed migration (a likely situation in many plant species). Parameters estimated in a survey of oak populations (Quercus robur L.) were used to examine whether our understanding of a real situation could be improved by the model. In particular, the rate of return to equilibrium was studied after a perturbation, i.e. a temporary decrease of population sizes (a bottle-neck).

Similar content being viewed by others

Pre-breeding in alfalfa germplasm develops highly differentiated populations, as revealed by genome-wide microhaplotype markers

Article Open access 08 January 2025

Reproductive strategies and their consequences for divergence, gene flow, and genetic diversity in three taxa of Clarkia

Article 12 September 2023

Improved pearl millet genomes representing the global heterotic pool offer a framework for molecular breeding applications

Article Open access 04 September 2023

Article PDF

References

  • Asmussen, M A, and Schnabel, A. 1991. Comparative effects of pollen and seed migration on the cytonuclear structure of plant populations. I. Maternal cytoplasmic inheritance. Genetics, 128, 639–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacilieri, R, Roussel, G, and Ducousso, A. 1993. Hybridization and mating system in a mixed stand of sessile and pedunculate oak. Ann Sci For, 50, (Suppl. 1), 122s–128s.

    Article  Google Scholar 

  • Bennett, K D. 1983. Postglacial population expansion of forest trees in Norfolk, UK. Nature, 303, 164–167.

    Article  Google Scholar 

  • Birky, C W, (Jr.), Fuerst, P, and Maruyama, T. 1989. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121, 613–627.

    PubMed  Google Scholar 

  • Chesnoy, L. 1987. L'origine des organites du cytoplasme embryonnaire chez les Gymnospermes. Bull Soc Bot Fr, Actual Bot, 134, 51–56.

    Google Scholar 

  • Crawford, T J. 1982. What is a population? In: Shorrocks, B. (ed.), Evolutionary Ecology, Blackwell Scientific Publications, Oxford, pp. 135–173.

    Google Scholar 

  • Crow, J F, and Aoki, K. 1984. Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci USA, 81, 6073–6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demarly, Y. 1963. Génétique des tétraploïdes et amélioration des plantes. Ann Amélior Plantes, 13, 307–400.

    Google Scholar 

  • Desalle, R, Templeton, A, Mori, L, Pletscher, S, and Johnston, J S. 1987. Temporal and spatial heterogeneity of mtDNA polymorphisms in natural populations of Drosophila mercatorum. Genetics, 116, 215–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganeshaiah, K N, and Uma Shaanker, R U. 1991. Floral Sex ratios in monoecious species - Why are trees more male-biased than herbs? Current Sci, 60, 319–321.

    Google Scholar 

  • Hale, L R, and Singh, R S. 1987. Mitochondrial DNA variation and genetic structure in populations of Drosophila melanogaster. Mol Biol Evol, 4, 622–637.

    CAS  PubMed  Google Scholar 

  • Kremer, A, Petit, R J, Zanetto, A, Fougere, V, Ducousso, A, Wagner, D B, and Chauvin, C. 1991. Nuclear and organelle gene diversity in Quercus robur and Q. petraea. In: G. Müller-Starck and M. Ziehe (eds), Genetic Variation in European Populations of Forest Trees, Sauerländer's Verlag, Frankfurt am Main, pp. 141–166.

    Google Scholar 

  • McCauley, D E. 1991. Genetic consequences of local population extinction and recolonization. Trends Ecol Evol, 6, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Malecot, G. 1948. Les Mathématiques de l'Hérédité. Masson, Paris.

    Google Scholar 

  • Maruyama, T. 1970. Effective number of alleles in a subdivided population. Theor Popul Biol, 1, 273–306.

    Article  CAS  PubMed  Google Scholar 

  • Müller-Starck, G, and Ziehe, M. 1991. Genetic variation in populations of Fagus sylvatica L., Quercus robur L., and Q. petraea Liebl. in Germany. In: G. Miiller-Starck and M. Ziehe (eds), Genetic Variation in European Populations of Forest Trees, Sauerländer's Verlag, Frankfurt am Main, pp. 125–140.

    Google Scholar 

  • Neale, D B, Marshall, K A, and Sederoff, R R. 1989. Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl. Proc Natl Acad Sci USA, 86, 9347–9349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70, 3321–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei, M. 1975. Molecular Population Genetics and Evolution. North-Holland, New York.

    Google Scholar 

  • Petit, R J. 1992. Polymorphisme de l'ADN chloroplastique dans un complexe d'espèces: les chines blancs europeens. Ph.D Thesis, University of Paris XI Orsay.

    Google Scholar 

  • Petit, R J, Kremer, A, and Wagner, D B. 1993. Geographic structure of chloroplast DNA polymorphisms in European oaks. Theor Appl Genet, 87, (in press).

    Article  CAS  PubMed  Google Scholar 

  • Prout, T. 1981. A note on the island model with sex dependent migration. Theor Appl Genet, 59, 327–332.

    Article  CAS  PubMed  Google Scholar 

  • Slatkin, M. 1977. Gene flow and genetic drift in a species subject to frequent local extinction. Theor Popul Biol, 12, 253–262.

    Article  CAS  PubMed  Google Scholar 

  • Slatkin, M. 1985. Gene flow in natural populations. Ann Rev Ecol Syst, 16, 393–430.

    Article  Google Scholar 

  • Slatkin, M, and Barton, N H. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 43, 1349–1368.

    Article  PubMed  Google Scholar 

  • Takahata, N, and Nei, M. 1984. Fst and Gst statistics in the finite island model. Genetics, 107, 501–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata, N, and Palumbi, S R. 1985. Extranuclear differentiation and gene flow in the finite island model. Genetics, 109, 441–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1943. Isolation by distance. Genetics, 28, 114–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanetto, A, Kremer, A, and Labbe, T. 1993. Differences of genetic variation based on isozymes of the primary and secondary metabolism in Quercus petraea. Ann Sci For, 50 (Suppl. 1), 245s–253s.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INRA, Laboratoire de Génétique et d'Amélioration des Arbres Forestiers, BP 45, 33611 Gazinet, Cedex, France

    R J Petit & A Kremer

  2. Department of Forestry, University of Kentucky, Lexington, KY 40546-0073, USA

    D B Wagner

Authors
  1. R J Petit
    View author publications

    Search author on:PubMed Google Scholar

  2. A Kremer
    View author publications

    Search author on:PubMed Google Scholar

  3. D B Wagner
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, R., Kremer, A. & Wagner, D. Finite island model for organelle and nuclear genes in plants. Heredity 71, 630–641 (1993). https://doi.org/10.1038/hdy.1993.188

Download citation

  • Received: 14 May 1993

  • Issue date: 01 December 1993

  • DOI: https://doi.org/10.1038/hdy.1993.188

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • bottle-neck
  • differentiation
  • diversity
  • mating system
  • polyploidy
  • Quercus robur

This article is cited by

  • Genetic structure and demographic history of Allium mongolicum based on SSR markers

    • Xiaoke Hu
    • Jing Hu
    • Qiushi Yu

    Plant Systematics and Evolution (2022)

  • Phylogenetic relationship of Picea mongolica with other Picea species in the same area based on chloroplast gene variations

    • Hao Di
    • Jingjing Ma
    • Shihui Niu

    Journal of Forestry Research (2021)

  • Phylogeography and phylogeny of genus Quercus L. (Fagaceae) in Turkey implied by variations of trnT(UGU)-L(UAA)-F (GAA) chloroplast DNA region

    • Ayten Dizkirici Tekpinar
    • Caner Aktaş
    • Zeki Kaya

    Tree Genetics & Genomes (2021)

  • An unexpected genetic diversity pattern and a complex demographic history of a rare medicinal herb, Chinese asparagus (Asparagus cochinchinensis) in Korea

    • Soo-Rang Lee
    • Han-Sol Park
    • Young-Dong Kim

    Scientific Reports (2019)

  • Genetic structure and genetic diversity of the endangered grassland plant Crepis mollis (Jacq.) Asch. as a basis for conservation management in Germany

    • Virginia K. Duwe
    • Ludo A. H. Muller
    • Sascha A. Ismail

    Conservation Genetics (2018)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited