Abstract
Engineered biological systems have been used to manipulate information, construct materials, process chemicals, produce energy, provide food, and help maintain or enhance human health and our environment. Unfortunately, our ability to quickly and reliably engineer biological systems that behave as expected remains quite limited. Foundational technologies that make routine the engineering of biology are needed. Vibrant, open research communities and strategic leadership are necessary to ensure that the development and application of biological technologies remains overwhelmingly constructive.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Levskaya, A. et al. Bacterial photography: Engineering Escherichia coli to see light. Nature doi:10.1038/nature04405 (this issue)
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335-338 (2000)
Martin, V. J. et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21, 796-802 (2003)
Sprinzak, D. & Elowitz, M. B. Reconstruction of genetic circuits. Nature doi:10.1038/nature04335 (this issue)
Szybalski, W. & Skalka, A. Nobel prizes and restriction enzymes. Gene 4, 181-182 (1978)
Goeddel, D. V. et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl Acad. Sci. USA 76, 106-110 (1979)
Murray, A. W. & Szostak, J. W. Construction of artificial chromosomes in yeast. Nature 305, 189-193 (1983)
Perlak, F. J. et al. Insect resistant cotton plants. Biotechnology 8, 939-943 (1990)
Oltvai, Z. N. & Barabasi, A. L. Systems biology. Life's complexity pyramid. Science 298, 763-764 (2002)
Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664-1669 (2002)
Chan, L. Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. published online, 13 September 2005 (doi:10.1038/msb4100025)
Weber, M. in The Vocation Lectures (eds Owen, D. & Strong, T. B.; translator Livingstone, R.) 1-31 (Hackett Publishing, Indianapolis, Indiana, 2004).
Knight, T. F. Engineering novel life. Mol. Syst. Biol. published online, 13 September 2005 (doi:10.1038/msb4100028)
Whitesides, G. M. The once and future nanomachine. Sci. Am. 285, 78-83 (2001)
Kirschner, M. W. The meaning of systems biology. Cell 20, 503-504 (2005)
Benner, S. A. & Sismour, A. M. Synthetic biology. Nature Rev. Genet. 6, 533-543 (2005)
Surowiecki, J. Turn of the century.WIRED 10.01 (2002).
International Nucleotide Sequence Database Collaboration. http://insdc.org/ (2005).
Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genet. 29, 365-371 (2001)
Protein Data Bank. http://www.rcsb.org/pdb/index.html (2005).
Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB), Enzyme supplement 5. Eur. J. Biochem. 264, 610-650 (1999)
Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524-531 (2003)
Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. REBASE-restriction enzymes and DNA methyltransferases. Nucleic Acids Res. 1, D230-D232 (2005)
Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339-342 (2000)
Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behaviour in Escherichia coli. Cell 113, 597-607 (2003)
Knight, T. F. DARPA BioComp Plasmid Distribution 1.00 of Standard Biobrick Components MIT Synthetic Biology Working Group Reports published online 22 May 2002 (doi:1721.1/21167).
Graham-Rowe, D. Britain may force DNA ‘barcodes’ for GM food.New Sci. (2003).
Mead, C. & Conway, L. Introduction to VLSI Systems (Addison-Wesley, Reading, Massachusetts, 1980)
Canton, B. Engineering the Interface Between Cellular Chassis and Integrated Biological Systems MIT Synthetic Biology Working Group Reports published online 8 August 2005 (doi:1721.1/19813).
Carlson, R. The pace and proliferation of biological technologies. Biosecur. Bioterror. 1, 203-214 (2003)
Stemmer, W. P. et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49-53 (1995)
Yount, B., Curtis, K. M. & Baric, R. S. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J. Virol. 74, 10600-10611 (2000)
Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050-1054 (2004)
Sharp, P. A. RNA interference-2001. Genes Dev. 15, 485-490 (2001)
Varmus, H. Reverse transcription. Sci. Am. 257, 56-59 (1987)
Katz, L. & Burge, C. B. Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res. 13, 2042-2051 (2003)
Zarrinpar, A., Park, S. H. & Lim, W. A. Optimization of specificity in a cellular protein interaction network by negative selection. Nature 426, 676-680 (2003)
Carroll, S. B. Evolution at two levels: on genes and form. PLoS Biol. 3, e245 (2005)
Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336-342 (1998)
von Neumann, J. in Collected Works (ed. Taub, A. H.) Vols 1-6 (Pergamon Press, New York, 1961-1963)
Endy, D., Deese, I. & Wadey, C. Adventures in synthetic biology. Nature [online] (2005); also available at http://mit.edu/endy/www/comic/.
Tumpey, T. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77-80 (2005)
Venter, J. C. Gene Synthesis Technology: State of the Science National Science Advisory Board on Biosecurity (conference) (2005).
Dyson, F. The darwinian interlude. Technology Review (2005).
Wolfe, S. A., Grant, R. A. & Pabo, C. O. Structure of a designed dimeric zinc finger protein bound to DNA. Biochemistry 42, 13401-13409 (2003)
Acknowledgements
I thank T. Knight, G. Sussman and R. Rettberg for teaching me about the theory and practice of engineering, especially as it relates to biology. I also thank A. Arkin, F. Arnold, R. Baric, F. Blattner, J. Braff, R. Brent, S. Bruck, C. Bustamante, B. Canton, R. Carlson, L. Chan, A. Che, G. Church, J. Collins, C. Conboy, L. Conway, R. Davis, M. Desai, J. Doyle, E. Eisenstadt, M. Elowitz, S. Forrest, T. Gardner, S. Goldstein, J. Gritton, H. Hellinga, G. Homsy, E. Horvitz, J. Jacobson, J. Kelly, T. Kalil, J. Keasling, D. Kirkpatrick, S. Kosuri, P. Lincoln, J. Mulligan, R. Murray, R. Nagpal, R. Newton, C. Pabo, I. Phillips, P. Rabinow, R. Shetty, P. Silver, B. Smith, C. Smolke, S. Sutton, C. Tomlin, J. Way, C. Webb, R. Weiss, S. Wolfe and A. Vesilind for their contributions to the ideas discussed here. Finally, I am grateful to R. Brent and N. Kuldell for comments on an earlier manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author is an Assistant Professor of Biological Engineering at MIT, co-founder of Codon Devices, Inc., and co-founder and President of the BioBricks Foundation, a not-for-profit organization.
Rights and permissions
About this article
Cite this article
Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005). https://doi.org/10.1038/nature04342
Issue date:
DOI: https://doi.org/10.1038/nature04342
This article is cited by
-
Precise and scalable self-organization in mammalian pseudo-embryos
Nature Structural & Molecular Biology (2024)
-
The function argument for ascribing interests
Synthese (2024)
-
ICOR: improving codon optimization with recurrent neural networks
BMC Bioinformatics (2023)
-
De novo engineering of a bacterial lifestyle program
Nature Chemical Biology (2023)
-
Integral feedback in synthetic biology: negative-equilibrium catastrophe
Journal of Mathematical Chemistry (2023)