Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Foundations for engineering biology

Abstract

Engineered biological systems have been used to manipulate information, construct materials, process chemicals, produce energy, provide food, and help maintain or enhance human health and our environment. Unfortunately, our ability to quickly and reliably engineer biological systems that behave as expected remains quite limited. Foundational technologies that make routine the engineering of biology are needed. Vibrant, open research communities and strategic leadership are necessary to ensure that the development and application of biological technologies remains overwhelmingly constructive.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Registry of Standard Biological Parts.
Figure 2: An abstraction hierarchy that supports the engineering of integrated genetic systems.
Figure 3: Technology classes relevant to current and future biological risk.

Similar content being viewed by others

References

  1. Levskaya, A. et al. Bacterial photography: Engineering Escherichia coli to see light. Nature doi:10.1038/nature04405 (this issue)

  2. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335-338 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Martin, V. J. et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21, 796-802 (2003)

    Article  CAS  Google Scholar 

  4. Sprinzak, D. & Elowitz, M. B. Reconstruction of genetic circuits. Nature doi:10.1038/nature04335 (this issue)

  5. Szybalski, W. & Skalka, A. Nobel prizes and restriction enzymes. Gene 4, 181-182 (1978)

    Article  CAS  Google Scholar 

  6. Goeddel, D. V. et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl Acad. Sci. USA 76, 106-110 (1979)

    Article  ADS  CAS  Google Scholar 

  7. Murray, A. W. & Szostak, J. W. Construction of artificial chromosomes in yeast. Nature 305, 189-193 (1983)

    Article  ADS  CAS  Google Scholar 

  8. Perlak, F. J. et al. Insect resistant cotton plants. Biotechnology 8, 939-943 (1990)

    CAS  PubMed  Google Scholar 

  9. Oltvai, Z. N. & Barabasi, A. L. Systems biology. Life's complexity pyramid. Science 298, 763-764 (2002)

    Article  CAS  Google Scholar 

  10. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664-1669 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Chan, L. Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. published online, 13 September 2005 (doi:10.1038/msb4100025)

  12. Weber, M. in The Vocation Lectures (eds Owen, D. & Strong, T. B.; translator Livingstone, R.) 1-31 (Hackett Publishing, Indianapolis, Indiana, 2004).

  13. Knight, T. F. Engineering novel life. Mol. Syst. Biol. published online, 13 September 2005 (doi:10.1038/msb4100028)

  14. Whitesides, G. M. The once and future nanomachine. Sci. Am. 285, 78-83 (2001)

    Article  CAS  Google Scholar 

  15. Kirschner, M. W. The meaning of systems biology. Cell 20, 503-504 (2005)

    Article  Google Scholar 

  16. Benner, S. A. & Sismour, A. M. Synthetic biology. Nature Rev. Genet. 6, 533-543 (2005)

    Article  CAS  Google Scholar 

  17. Surowiecki, J. Turn of the century.WIRED 10.01 (2002).

  18. International Nucleotide Sequence Database Collaboration. http://insdc.org/ (2005).

  19. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genet. 29, 365-371 (2001)

    Article  CAS  Google Scholar 

  20. Protein Data Bank. http://www.rcsb.org/pdb/index.html (2005).

  21. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB), Enzyme supplement 5. Eur. J. Biochem. 264, 610-650 (1999)

    Article  Google Scholar 

  22. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524-531 (2003)

    Article  CAS  Google Scholar 

  23. Roberts, R. J., Vincze, T., Posfai, J. & Macelis, D. REBASE-restriction enzymes and DNA methyltransferases. Nucleic Acids Res. 1, D230-D232 (2005)

    Google Scholar 

  24. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339-342 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Atkinson, M. R., Savageau, M. A., Myers, J. T. & Ninfa, A. J. Development of genetic circuitry exhibiting toggle switch or oscillatory behaviour in Escherichia coli. Cell 113, 597-607 (2003)

    Article  CAS  Google Scholar 

  26. Knight, T. F. DARPA BioComp Plasmid Distribution 1.00 of Standard Biobrick Components MIT Synthetic Biology Working Group Reports published online 22 May 2002 (doi:1721.1/21167).

  27. Graham-Rowe, D. Britain may force DNA ‘barcodes’ for GM food.New Sci. (2003).

  28. Mead, C. & Conway, L. Introduction to VLSI Systems (Addison-Wesley, Reading, Massachusetts, 1980)

    Google Scholar 

  29. Canton, B. Engineering the Interface Between Cellular Chassis and Integrated Biological Systems MIT Synthetic Biology Working Group Reports published online 8 August 2005 (doi:1721.1/19813).

  30. Carlson, R. The pace and proliferation of biological technologies. Biosecur. Bioterror. 1, 203-214 (2003)

    Article  Google Scholar 

  31. Stemmer, W. P. et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49-53 (1995)

    Article  CAS  Google Scholar 

  32. Yount, B., Curtis, K. M. & Baric, R. S. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J. Virol. 74, 10600-10611 (2000)

    Article  CAS  Google Scholar 

  33. Tian, J. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050-1054 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Sharp, P. A. RNA interference-2001. Genes Dev. 15, 485-490 (2001)

    Article  CAS  Google Scholar 

  35. Varmus, H. Reverse transcription. Sci. Am. 257, 56-59 (1987)

    Article  CAS  Google Scholar 

  36. Katz, L. & Burge, C. B. Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res. 13, 2042-2051 (2003)

    Article  CAS  Google Scholar 

  37. Zarrinpar, A., Park, S. H. & Lim, W. A. Optimization of specificity in a cellular protein interaction network by negative selection. Nature 426, 676-680 (2003)

    Article  ADS  CAS  Google Scholar 

  38. Carroll, S. B. Evolution at two levels: on genes and form. PLoS Biol. 3, e245 (2005)

    Article  Google Scholar 

  39. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336-342 (1998)

    Article  ADS  CAS  Google Scholar 

  40. von Neumann, J. in Collected Works (ed. Taub, A. H.) Vols 1-6 (Pergamon Press, New York, 1961-1963)

    MATH  Google Scholar 

  41. Endy, D., Deese, I. & Wadey, C. Adventures in synthetic biology. Nature [online] (2005); also available at http://mit.edu/endy/www/comic/.

  42. Tumpey, T. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77-80 (2005)

    Article  ADS  CAS  Google Scholar 

  43. Venter, J. C. Gene Synthesis Technology: State of the Science National Science Advisory Board on Biosecurity (conference) (2005).

  44. Dyson, F. The darwinian interlude. Technology Review (2005).

  45. Wolfe, S. A., Grant, R. A. & Pabo, C. O. Structure of a designed dimeric zinc finger protein bound to DNA. Biochemistry 42, 13401-13409 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank T. Knight, G. Sussman and R. Rettberg for teaching me about the theory and practice of engineering, especially as it relates to biology. I also thank A. Arkin, F. Arnold, R. Baric, F. Blattner, J. Braff, R. Brent, S. Bruck, C. Bustamante, B. Canton, R. Carlson, L. Chan, A. Che, G. Church, J. Collins, C. Conboy, L. Conway, R. Davis, M. Desai, J. Doyle, E. Eisenstadt, M. Elowitz, S. Forrest, T. Gardner, S. Goldstein, J. Gritton, H. Hellinga, G. Homsy, E. Horvitz, J. Jacobson, J. Kelly, T. Kalil, J. Keasling, D. Kirkpatrick, S. Kosuri, P. Lincoln, J. Mulligan, R. Murray, R. Nagpal, R. Newton, C. Pabo, I. Phillips, P. Rabinow, R. Shetty, P. Silver, B. Smith, C. Smolke, S. Sutton, C. Tomlin, J. Way, C. Webb, R. Weiss, S. Wolfe and A. Vesilind for their contributions to the ideas discussed here. Finally, I am grateful to R. Brent and N. Kuldell for comments on an earlier manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew Endy.

Ethics declarations

Competing interests

The author is an Assistant Professor of Biological Engineering at MIT, co-founder of Codon Devices, Inc., and co-founder and President of the BioBricks Foundation, a not-for-profit organization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005). https://doi.org/10.1038/nature04342

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nature04342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing