Abstract
A major impediment in the treatment of neurological diseases is the presence of the blood–brain barrier, which precludes the entry of therapeutic molecules from blood to brain. Here we show that a short peptide derived from rabies virus glycoprotein (RVG) enables the transvascular delivery of small interfering RNA (siRNA) to the brain. This 29-amino-acid peptide specifically binds to the acetylcholine receptor expressed by neuronal cells. To enable siRNA binding, a chimaeric peptide was synthesized by adding nonamer arginine residues at the carboxy terminus of RVG. This RVG-9R peptide was able to bind and transduce siRNA to neuronal cells in vitro, resulting in efficient gene silencing. After intravenous injection into mice, RVG-9R delivered siRNA to the neuronal cells, resulting in specific gene silencing within the brain. Furthermore, intravenous treatment with RVG-9R-bound antiviral siRNA afforded robust protection against fatal viral encephalitis in mice. Repeated administration of RVG-9R-bound siRNA did not induce inflammatory cytokines or anti-peptide antibodies. Thus, RVG-9R provides a safe and noninvasive approach for the delivery of siRNA and potentially other therapeutic molecules across the blood–brain barrier.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
de Boer, A. G. & Gaillard, P. J. Drug Targeting to the brain. Annu. Rev. Pharmacol. Toxicol. 47, 323–355 (2007)
Miller, G. Drug targeting. Breaking down barriers. Science 297, 1116–1118 (2002)
Schlachetzki, F., Zhang, Y., Boado, R. J. & Pardridge, W. M. Gene therapy of the brain: the trans-vascular approach. Neurology 62, 1275–1281 (2004)
Lentz, T. L., Burrage, T. G., Smith, A. L., Crick, J. & Tignor, G. H. Is the acetylcholine receptor a rabies virus receptor? Science 215, 182–184 (1982)
Lafon, M. Rabies virus receptors. J. Neurovirol. 11, 82–87 (2005)
Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003)
Mazarakis, N. D. et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet. 10, 2109–2121 (2001)
Kumar, P., Lee, S. K., Shankar, P. & Manjunath, N. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med. 3, e96 (2006)
Leonard, S. & Bertrand, D. Neuronal nicotinic receptors: from structure to function. Nicotine Tob. Res. 3, 203–223 (2001)
Lentz, T. L. Rabies virus binding to an acetylcholine receptor alpha-subunit peptide. J. Mol. Recognit. 3, 82–88 (1990)
Notter, M. F. & Leary, J. F. Flow cytometric analysis of tetanus toxin binding to neuroblastoma cells. J. Cell. Physiol. 125, 476–484 (1985)
Chen, T. J., Chen, S. S., Wu, R. E., Wang, D. C. & Lin, C. H. Implication of nNOS in the enlargement of AChR aggregates but not the initial aggregate formation in a novel coculture model. Chin. J. Physiol. 48, 129–138 (2005)
Gotti, C. & Clementi, F. Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363–396 (2004)
Gupta, B., Levchenko, T. S. & Torchilin, V. P. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 57, 637–651 (2005)
Dietz, G. P. & Bahr, M. Peptide-enhanced cellular internalization of proteins in neuroscience. Brain Res. Bull. 68, 103–114 (2005)
Deshayes, S., Morris, M. C., Divita, G. & Heitz, F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. 62, 1839–1849 (2005)
Wender, P. A. et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl Acad. Sci. USA 97, 13003–13008 (2000)
Kim, W. J. et al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14, 343–350 (2006)
Hino, T. et al. In vivo delivery of small interfering RNA targeting brain capillary endothelial cells. Biochem. Biophys. Res. Commun. 340, 263–267 (2006)
Akaneya, Y., Jiang, B. & Tsumoto, T. RNAi-induced gene silencing by local electroporation in targeting brain region. J. Neurophysiol. 93, 594–602 (2005)
Diamond, M. S., Shrestha, B., Marri, A., Mahan, D. & Engle, M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77, 2578–2586 (2003)
Neyts, J., Leyssen, P. & De Clercq, E. Infections with flaviviridae. Verh. K. Acad. Geneeskd Belg. 61, 661–697 (1999)
Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol. 23, 457–462 (2005)
Hoyer, D. et al. Global down-regulation of gene expression in the brain using RNA interference, with emphasis on monoamine transporters and GPCRs: implications for target characterization in psychiatric and neurological disorders. J. Recept. Signal Transduct. Res. 26, 527–547 (2006)
Dorn, G. et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49 (2004)
Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004)
Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 23, 1002–1007 (2005)
Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006)
Noble, C. O. et al. Development of ligand-targeted liposomes for cancer therapy. Expert Opin. Ther. Targets 8, 335–353 (2004)
Zhang, Y. et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10, 3667–3677 (2004)
Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E. & Triche, T. J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65, 8984–8992 (2005)
Juliano, R. L. Peptide-oligonucleotide conjugates for the delivery of antisense and siRNA. Curr. Opin. Mol. Ther. 7, 132–136 (2005)
Melikov, K. & Chernomordik, L. V. Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery. Cell. Mol. Life Sci. 62, 2739–2749 (2005)
Henriques, S. T., Melo, M. N. & Castanho, M. A. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem. J. 399, 1–7 (2006)
Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23, 709–717 (2005)
Schutz, B. et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J. Neurosci. 25, 7805–7812 (2005)
Acknowledgements
We thank J. Reiser for providing the RVG construct, and S. S. Kim, M. Kumar, S. M. Cifuni and I. Martins for technical assistance. This work was supported by NIH grants to N.M. and P.S. P.K. was supported by a CFAR fellowship grant, and S.K.L. was supported by a Korea Ministry of Science and Technology grant. B.L.D. and J.L.M. were supported by NIH grants.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Figures S1-S3 with Legends (PDF 839 kb)
Rights and permissions
About this article
Cite this article
Kumar, P., Wu, H., McBride, J. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007). https://doi.org/10.1038/nature05901
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nature05901
This article is cited by
-
Fe3O4@Chitosan@ZIF-8@RVG29, an anti-glioma nanoplatform guided by fixed and activated by alternating magnetic field
Scientific Reports (2024)
-
Targeted siRNA delivery to lung epithelia reduces airway inflammation in a mouse model of allergic asthma
Biotechnology and Bioprocess Engineering (2024)
-
Acetylcholine Analog-Modified Albumin Nanoparticles for the Enhanced and Synchronous Brain Delivery of Saponin Components of Panax Notoginseng
Pharmaceutical Research (2024)
-
Intranasal delivery of siRNA targeting NR2B attenuates cancer-associated neuropathic pain
Journal of Pharmaceutical Investigation (2024)
-
MicroRNA therapeutic targets in neonatal hypoxic–ischemic brain injury: a narrative review
Pediatric Research (2023)