Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transvascular delivery of small interfering RNA to the central nervous system

Abstract

A major impediment in the treatment of neurological diseases is the presence of the blood–brain barrier, which precludes the entry of therapeutic molecules from blood to brain. Here we show that a short peptide derived from rabies virus glycoprotein (RVG) enables the transvascular delivery of small interfering RNA (siRNA) to the brain. This 29-amino-acid peptide specifically binds to the acetylcholine receptor expressed by neuronal cells. To enable siRNA binding, a chimaeric peptide was synthesized by adding nonamer arginine residues at the carboxy terminus of RVG. This RVG-9R peptide was able to bind and transduce siRNA to neuronal cells in vitro, resulting in efficient gene silencing. After intravenous injection into mice, RVG-9R delivered siRNA to the neuronal cells, resulting in specific gene silencing within the brain. Furthermore, intravenous treatment with RVG-9R-bound antiviral siRNA afforded robust protection against fatal viral encephalitis in mice. Repeated administration of RVG-9R-bound siRNA did not induce inflammatory cytokines or anti-peptide antibodies. Thus, RVG-9R provides a safe and noninvasive approach for the delivery of siRNA and potentially other therapeutic molecules across the blood–brain barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A short RVG peptide binds to neuronal cells in vitro and in vivo.
Figure 2: RVG-9R peptide binds and delivers siRNA to neuronal cells in vitro , resulting in gene silencing.
Figure 3: RVG-9R enables transvascular delivery of siRNA to the central nervous system.
Figure 4: Brain-specific gene silencing by intravenous injection of RVG-9R/siRNA complex.
Figure 5: Intravenous treatment with antiviral siRNA/RVG-9R complex protects mice against JEV encephalitis.

Similar content being viewed by others

References

  1. de Boer, A. G. & Gaillard, P. J. Drug Targeting to the brain. Annu. Rev. Pharmacol. Toxicol. 47, 323–355 (2007)

    Article  CAS  Google Scholar 

  2. Miller, G. Drug targeting. Breaking down barriers. Science 297, 1116–1118 (2002)

    Article  CAS  Google Scholar 

  3. Schlachetzki, F., Zhang, Y., Boado, R. J. & Pardridge, W. M. Gene therapy of the brain: the trans-vascular approach. Neurology 62, 1275–1281 (2004)

    Article  CAS  Google Scholar 

  4. Lentz, T. L., Burrage, T. G., Smith, A. L., Crick, J. & Tignor, G. H. Is the acetylcholine receptor a rabies virus receptor? Science 215, 182–184 (1982)

    Article  ADS  CAS  Google Scholar 

  5. Lafon, M. Rabies virus receptors. J. Neurovirol. 11, 82–87 (2005)

    Article  CAS  Google Scholar 

  6. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003)

    Article  CAS  Google Scholar 

  7. Mazarakis, N. D. et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum. Mol. Genet. 10, 2109–2121 (2001)

    Article  CAS  Google Scholar 

  8. Kumar, P., Lee, S. K., Shankar, P. & Manjunath, N. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med. 3, e96 (2006)

    Article  Google Scholar 

  9. Leonard, S. & Bertrand, D. Neuronal nicotinic receptors: from structure to function. Nicotine Tob. Res. 3, 203–223 (2001)

    Article  CAS  Google Scholar 

  10. Lentz, T. L. Rabies virus binding to an acetylcholine receptor alpha-subunit peptide. J. Mol. Recognit. 3, 82–88 (1990)

    Article  CAS  Google Scholar 

  11. Notter, M. F. & Leary, J. F. Flow cytometric analysis of tetanus toxin binding to neuroblastoma cells. J. Cell. Physiol. 125, 476–484 (1985)

    Article  CAS  Google Scholar 

  12. Chen, T. J., Chen, S. S., Wu, R. E., Wang, D. C. & Lin, C. H. Implication of nNOS in the enlargement of AChR aggregates but not the initial aggregate formation in a novel coculture model. Chin. J. Physiol. 48, 129–138 (2005)

    CAS  PubMed  Google Scholar 

  13. Gotti, C. & Clementi, F. Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363–396 (2004)

    Article  CAS  Google Scholar 

  14. Gupta, B., Levchenko, T. S. & Torchilin, V. P. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 57, 637–651 (2005)

    Article  CAS  Google Scholar 

  15. Dietz, G. P. & Bahr, M. Peptide-enhanced cellular internalization of proteins in neuroscience. Brain Res. Bull. 68, 103–114 (2005)

    Article  CAS  Google Scholar 

  16. Deshayes, S., Morris, M. C., Divita, G. & Heitz, F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. 62, 1839–1849 (2005)

    Article  CAS  Google Scholar 

  17. Wender, P. A. et al. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl Acad. Sci. USA 97, 13003–13008 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Kim, W. J. et al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14, 343–350 (2006)

    Article  Google Scholar 

  19. Hino, T. et al. In vivo delivery of small interfering RNA targeting brain capillary endothelial cells. Biochem. Biophys. Res. Commun. 340, 263–267 (2006)

    Article  CAS  Google Scholar 

  20. Akaneya, Y., Jiang, B. & Tsumoto, T. RNAi-induced gene silencing by local electroporation in targeting brain region. J. Neurophysiol. 93, 594–602 (2005)

    Article  CAS  Google Scholar 

  21. Diamond, M. S., Shrestha, B., Marri, A., Mahan, D. & Engle, M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77, 2578–2586 (2003)

    Article  CAS  Google Scholar 

  22. Neyts, J., Leyssen, P. & De Clercq, E. Infections with flaviviridae. Verh. K. Acad. Geneeskd Belg. 61, 661–697 (1999)

    CAS  PubMed  Google Scholar 

  23. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol. 23, 457–462 (2005)

    Article  CAS  Google Scholar 

  24. Hoyer, D. et al. Global down-regulation of gene expression in the brain using RNA interference, with emphasis on monoamine transporters and GPCRs: implications for target characterization in psychiatric and neurological disorders. J. Recept. Signal Transduct. Res. 26, 527–547 (2006)

    Article  CAS  Google Scholar 

  25. Dorn, G. et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49 (2004)

    Article  Google Scholar 

  26. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 23, 1002–1007 (2005)

    Article  CAS  Google Scholar 

  28. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006)

    Article  ADS  CAS  Google Scholar 

  29. Noble, C. O. et al. Development of ligand-targeted liposomes for cancer therapy. Expert Opin. Ther. Targets 8, 335–353 (2004)

    Article  CAS  Google Scholar 

  30. Zhang, Y. et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10, 3667–3677 (2004)

    Article  CAS  Google Scholar 

  31. Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E. & Triche, T. J. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65, 8984–8992 (2005)

    Article  CAS  Google Scholar 

  32. Juliano, R. L. Peptide-oligonucleotide conjugates for the delivery of antisense and siRNA. Curr. Opin. Mol. Ther. 7, 132–136 (2005)

    CAS  PubMed  Google Scholar 

  33. Melikov, K. & Chernomordik, L. V. Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery. Cell. Mol. Life Sci. 62, 2739–2749 (2005)

    Article  CAS  Google Scholar 

  34. Henriques, S. T., Melo, M. N. & Castanho, M. A. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem. J. 399, 1–7 (2006)

    Article  CAS  Google Scholar 

  35. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23, 709–717 (2005)

    Article  CAS  Google Scholar 

  36. Schutz, B. et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J. Neurosci. 25, 7805–7812 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Reiser for providing the RVG construct, and S. S. Kim, M. Kumar, S. M. Cifuni and I. Martins for technical assistance. This work was supported by NIH grants to N.M. and P.S. P.K. was supported by a CFAR fellowship grant, and S.K.L. was supported by a Korea Ministry of Science and Technology grant. B.L.D. and J.L.M. were supported by NIH grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Premlata Shankar or N. Manjunath.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S3 with Legends (PDF 839 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Wu, H., McBride, J. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43 (2007). https://doi.org/10.1038/nature05901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature05901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing