Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Absolute quantification of somatic DNA alterations in human cancer

Abstract

We describe a computational method that infers tumor purity and malignant cell ploidy directly from analysis of somatic DNA alterations. The method, named ABSOLUTE, can detect subclonal heterogeneity and somatic homozygosity, and it can calculate statistical sensitivity for detection of specific aberrations. We used ABSOLUTE to analyze exome sequencing data from 214 ovarian carcinoma tumor-normal pairs. This analysis identified both pervasive subclonal somatic point-mutations and a small subset of predominantly clonal and homozygous mutations, which were overrepresented in the tumor suppressor genes TP53 and NF1 and in a candidate tumor suppressor gene CDK12. We also used ABSOLUTE to infer absolute allelic copy-number profiles from 3,155 diverse cancer specimens, revealing that genome-doubling events are common in human cancer, likely occur in cells that are already aneuploid, and influence pathways of tumor progression (for example, with recessive inactivation of NF1 being less common after genome doubling). ABSOLUTE will facilitate the design of clinical sequencing studies and studies of cancer genome evolution and intra-tumor heterogeneity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of tumor DNA analysis using ABSOLUTE.
Figure 2: ABSOLUTE method validation and comparison.
Figure 3: Pan-cancer application of ABSOLUTE.
Figure 4: Characterization of subclonal evolution in ovarian cancer by integrative analysis of SNP array and whole-exome sequencing data.
Figure 5: Classification of somatic mutations by multiplicity analysis in 214 primary HGS-OvCa tumor samples.
Figure 6: Incidence and timing of whole-genome doubling events in primary cancers.
Figure 7: Genetic and clinical associations with genome doubling in primary HGS-OvCa samples.

Similar content being viewed by others

References

  1. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Mei, R. et al. Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res. 10, 1126–1137 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Lindblad-Toh, K. et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat. Biotechnol. 18, 1001–1005 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, X. et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 64, 3060–3071 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bignell, G.R. et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 14, 287–295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Campbell, P.J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chiang, D.Y. et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 6, 99–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Boveri, T. J. Cell Sci. 121 (Suppl.1), 1–84 (2008).

    Article  PubMed  Google Scholar 

  10. Mitelman, F. Recurrent chromosome aberrations in cancer. Mutat. Res. 462, 247–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Albertson, D.G., Collins, C., McCormick, F. & Gray, J.W. Chromosome aberrations in solid tumors. Nat. Genet. 34, 369–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5, 45–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Storchova, Z. & Kuffer, C. The consequences of tetraploidy and aneuploidy. J. Cell Sci. 121, 3859–3866 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Navin, N. et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hicks, J. et al. High-resolution ROMA CGH and FISH analysis of aneuploid and diploid breast tumors. Cold Spring Harb. Symp. Quant. Biol. 70, 51–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Lyng, H. et al. GeneCount: genome-wide calculation of absolute tumor DNA copy numbers from array comparative genomic hybridization data. Genome Biol. 9, R86 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hudson, T.J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Weir, B.A. et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  22. Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bass, A.J. et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A–TCF7L2 fusion. Nat. Genet. 43, 964–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Holland, A.J. & Cleveland, D.W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10, 478–487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pleasance, E.D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Attiyeh, E.F. et al. Genomic copy number determination in cancer cells from single nucleotide polymorphism microarrays based on quantitative genotyping corrected for aneuploidy. Genome Res. 19, 276–283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Popova, T. et al. Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays. Genome Biol. 10, R128 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Greenman, C.D. et al. PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics 11, 164–175 (2010).

    Article  PubMed  Google Scholar 

  31. Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. USA 107, 16910–16915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yau, C. et al. A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biol. 11, R92 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, A. et al. GPHMM: an integrated hidden Markov model for identification of copy number alteration and loss of heterozygosity in complex tumor samples using whole genome SNP arrays. Nucleic Acids Res. 39, 4928–4941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  35. Roschke, A.V. et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res. 63, 8634–8647 (2003).

    CAS  PubMed  Google Scholar 

  36. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levanon, K., Crum, C. & Drapkin, R. New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J. Clin. Oncol. 26, 5284–5293 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Galipeau, P.C. et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc. Natl. Acad. Sci. USA 93, 7081–7084 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barrett, M.T. et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat. Genet. 22, 106–109 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mermel, C.H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fudenberg, G., Getz, G., Meyerson, M. & Mirny, L.A. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat. Biotechnol. 29, 1109–1113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ganem, N.J., Godinho, S.A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Campbell, P.J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl. Acad. Sci. USA 105, 13081–13086 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dutrillaux, B., Gerbault-Seureau, M., Remvikos, Y., Zafrani, B. & Prieur, M. Breast cancer genetic evolution: I. Data from cytogenetics and DNA content. Breast Cancer Res. Treat. 19, 245–255 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Ganem, N.J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Davoli, T., Denchi, E.L. & de Lange, T. Persistent telomere damage induces bypass of mitosis and tetraploidy. Cell 141, 81–93 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bazeley, P.S. et al. A model for random genetic damage directing selection of diploid or aneuploid tumours. Cell Prolif. 44, 212–223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Walter, M.J. et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carter, S.L, Meyerson, M., & Getz, G. Accurate estimation of homologue-specific DNA concentration ratios in cancer samples allows long-range haplotyping. Preprint at <http://precedings.nature.com/documents/6494/version/1/> (2011).

  55. Altshuler, D.M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Browning, B.L. & Yu, Z. Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am. J. Hum. Genet. 85, 847–861 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A. & Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18 (suppl 1), S96–S104 (2002).

    Article  PubMed  Google Scholar 

  58. Dempster, A.P., Laird, N.M. & Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. Roy. Stat. Soc. Ser. B 39, 1–38 (1977).

    Google Scholar 

  59. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Korn, J.M. et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat. Genet. 40, 1253–1260 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute as part of The Cancer Genome Atlas project: U24CA126546 (M.M.), U24CA143867 (M.M.), and U24CA143845 (G.G.). S.L.C. and E.H. were supported by training grant T32 HG002295 from the National Human Genome Research Institute. In addition, D.P. was supported by the US National Institutes of Health (NIH) - 5R01 GM083299-14; D.A.L. by Department of Defense W81XWH-10-1-0222; T.Z. by NIH/National Institute of General Medical Sciences 5 T32 GM008313; R.B. by NIH K08CA122833 and U54CA143798. B.A.W. was supported by National Research Service Award grant F32CA113126.

Author information

Authors and Affiliations

Authors

Contributions

M.M. posed the concept of using allelic copy number analysis to assess tumor genomic purity. G.G. and S.L.C. conceived and designed the analysis. S.L.C. designed and implemented the ABSOLUTE algorithm, and performed data analysis. K.C. assisted with mutation calling and validation. E.H. performed analysis with ASCAT and assisted with multiplicity analysis. A.M. assisted with the determination of statistical power for the ovarian cancer data. T.Z. assisted with analysis of the SCNA length distribution versus genome doubling. R.C.O. and W.W. processed the SNP array experiments. W.W. designed and executed the DNA mixing experiment. H.S. and P.W.L. conceived and executed the leukocyte methylation signature analysis. B.A.W. contributed insight into allelic analysis of SNP array data. D.A.L. managed the FACS analysis of specimens for ploidy determination. All authors contributed to the final manuscript. D.P. and R.B. provided critical review of the manuscript. S.L.C., M.M., G.G. and E.S.L. wrote the manuscript. R.B., M.M. and G.G. provided leadership for the project.

Corresponding authors

Correspondence to Scott L Carter or Gad Getz.

Ethics declarations

Competing interests

M.M. is an equity holder in and consultant for Foundation Medicine, and is a consultant for, and receives research support from, Novartis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Note (PDF 3420 kb)

Supplementary Table 1

Pan-cancer analysis: sample characteristics and predicted purity / ploidy values (TXT 658 kb)

Supplementary Table 2

Pan-cancer analysis: segmented absolute allelic copy numbers (TXT 27073 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, S., Cibulskis, K., Helman, E. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30, 413–421 (2012). https://doi.org/10.1038/nbt.2203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt.2203

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer