Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The minimum information about a genome sequence (MIGS) specification

Abstract

With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The scope of MIGS.

Similar content being viewed by others

References

  1. Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702 (2005).

    Article  CAS  Google Scholar 

  2. Liolios, K., Mavromatis, K., Tavernarakis, N. & Kyrpides, N.C. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 36 (database issue), D475–D479 (2008).

    Article  CAS  Google Scholar 

  3. Martiny, J. & Field, D. Ecological perspectives on our complete genome collection. Ecology Letters 8, 1334–1345 (2005).

    Article  Google Scholar 

  4. Rusch, D.B. et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. [online] 5, e77 (2007).

    Article  Google Scholar 

  5. Edwards, R.A. et al. Using pyrosequencing to shed light on deep mine microbial ecology under extreme hydrogeologic conditions. BMC Genomics 7, 57 (2006).

    Article  Google Scholar 

  6. Committee on Metagenomics: Challenges and Functional Applications, National Research Council. The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet (National Academies Press, Washington, DC, 2007).

  7. Coenye, T. & Vandamme, P. Bacterial whole-genome sequences: minimal information and strain availability. Microbiology 150, 2017–2018 (2004).

    Article  CAS  Google Scholar 

  8. Haft, D.H., Selengut, J.D., Brinkac, L.M., Zafar, N. & White, O. Genome properties: a system for the investigation of prokaryotic genetic content for microbiology, genome annotation and comparative genomics. Bioinformatics 21, 293–306 (2005).

    Article  CAS  Google Scholar 

  9. Lombardot, T. et al. Megx.net—database resources for marine ecological genomics. Nucleic Acids Res. 34 (database issue), D390–D393 (2006).

    Article  CAS  Google Scholar 

  10. Tautz, D., Arctander, P., Minelli, A., Thomas, E. & Vogler, A.P. A plea for DNA taxonomy. Trends Ecol. Evol. 18, 70–74 (2003).

    Article  Google Scholar 

  11. Zhang, K. et al. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol. 24, 680–686 (2006).

    Article  CAS  Google Scholar 

  12. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  13. Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

    Article  CAS  Google Scholar 

  14. Garrity, G.M. (ed.) Bergey's Manual of Systematic Bacteriology, 2nd edn., Vol. 1, (Springer, New York, 2001).

    Google Scholar 

  15. Field, D. et al. Meeting report: eGenomics: cataloguing our complete genome collection I. Comp. Funct. Genomics 6, 357–362 (2006).

    Article  Google Scholar 

  16. Field, D. & Hughes, J. Cataloguing our current genome collection. Microbiology 151, 1016–1019 (2005).

    Article  Google Scholar 

  17. Pace, N.R. Time for a change. Nature 441, 289 (2006).

    Article  CAS  Google Scholar 

  18. Sansone, S.A. et al. A strategy capitalizing on synergies: the Reporting Structure for Biological Investigation (RSBI) working group. OMICS 10, 164–171 (2006).

    Article  CAS  Google Scholar 

  19. Taylor, C. et al. Promoting coherent minimum reporting requirements for biological and biomedical investigations: the MIBBI project. Nat. Biotechnol. (in the press).

  20. Ward, N., Eisen, J., Fraser, C. & Stackebrandt, E. Sequenced strains must be saved from extinction. Nature 414, 148 (2001).

    Article  CAS  Google Scholar 

  21. Field, D. et al. Meeting report: eGenomics: cataloguing our complete genome collection III. Comp. Funct. Genomics 2007, 47304 (2007).

    Article  Google Scholar 

  22. Morrison, N. et al. Concept of sample in OMICS technology. OMICS 10, 127–137 (2006).

    Article  CAS  Google Scholar 

  23. Whetzel, P.L. et al. Development of FuGO: an ontology for functional genomics investigations. OMICS 10, 199–204 (2006).

    Article  CAS  Google Scholar 

  24. Cochrane, G. et al. Evidence standards in experimental and inferential INSDC Third Party Annotation data. OMICS 10, 105–113 (2006).

    Article  CAS  Google Scholar 

  25. Markowitz, V.M. et al. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36 (database issue), D534–D538 (2008).

    Article  CAS  Google Scholar 

  26. Moran, M.A. et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432, 910–913 (2004).

    Article  CAS  Google Scholar 

  27. Buchan, A., Gonzalez, J.M. & Moran, M.A. Overview of the marine roseobacter lineage. Appl. Environ. Microbiol. 71, 5665–5677 (2005).

    Article  CAS  Google Scholar 

  28. Angly, F.E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006).

    Article  Google Scholar 

  29. Bauer, M. et al. Whole genome analysis of the marine Bacteroidetes 'Gramella forsetii' reveals adaptations to degradation of polymeric organic matter. Environ. Microbiol. 8, 2201–2213 (2006).

    Article  CAS  Google Scholar 

  30. Glockner, F.O. et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc. Natl. Acad. Sci. USA 100, 8298–8303 (2003).

    Article  CAS  Google Scholar 

  31. Rabus, R. et al. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol. 6, 887–902 (2004).

    Article  CAS  Google Scholar 

  32. Raes J., Foerstner, K.U. & Bork, P. Get the most out of your metagenome: computational analysis of environmental sequence data. Curr. Opin. Microbiol. 10, 490–498 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the UK National Institute of Environmental eScience (NIEeS) and the European Bioinformatics Institute (EBI) for hosting GSC workshops and the UK Natural Environmental Research Council for providing funds for coordination (NE/D01252X/1) and infrastructure building activities (NE/E007325/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn Field.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (DOC 191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, D., Garrity, G., Gray, T. et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26, 541–547 (2008). https://doi.org/10.1038/nbt1360

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nbt1360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing