Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The genome of the domesticated apple (Malus × domestica Borkh.)

Abstract

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide duplications in the apple genome.
Figure 2: Dot-plot comparisons between apple and grape chromosomes.
Figure 3: A model explaining the evolution from a 9-chromosome ancestor to the 17-chromosome karyotype of extant Pyreae, including the genus Malus.
Figure 4: Molecular distances among Rosaceae species and their comparison with grape.
Figure 5: Phylogenetic relationships among Malus species, including M. × domestica cultivars, based on a multilocus concatenated sequence alignment derived from partial resequencing of 23 apple genetic loci.

Similar content being viewed by others

References

  1. Zharkikh, A. et al. Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv Pinot Noir: problems and solutions. J. Biotechnol. 136, 38–43 (2008).

    Article  CAS  Google Scholar 

  2. Velasco, R. et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326 (2007).

    Article  Google Scholar 

  3. Hummer, K.E. & Janick, J. Rosaceae: taxonomy, economic importance, genomics. in Genetics and Genomics of Rosaceae (eds. Folta, K.M. & Gardiner, S.E.) 1–17 (Springer, New York, 2009).

  4. Evans, R.C. & Campbell, C.S. The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am. J. Bot. 89, 1478–1484 (2002).

    Article  CAS  Google Scholar 

  5. Fawcett, J.A., Maere, S. & Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci. USA 106, 5737–5742 (2009).

    Article  CAS  Google Scholar 

  6. Tuskan, G.A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006).

    Article  CAS  Google Scholar 

  7. Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

    Article  CAS  Google Scholar 

  8. Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486 (2008).

    Article  CAS  Google Scholar 

  9. Van de Peer, Y., Fawcett, J.A., Proost, S., Sterck, L. & Vandepoele, K. The flowering world: a tale of duplications. Trends Plant Sci. 14, 680–688 (2009).

    Article  CAS  Google Scholar 

  10. Luo, M.C. et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl. Acad. Sci. USA 106, 15780–15785 (2009).

    Article  CAS  Google Scholar 

  11. Green, R.E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).

    Article  CAS  Google Scholar 

  12. Potter, D. et al. Phylogeny and classification of Rosaceae. Plant Syst. Evol. 266, 5–43 (2007).

    Article  Google Scholar 

  13. Juniper, B.E. & Mabberley, D.J. The Story of the Apple (Timber Press, Portland, Oregon, USA, 2006).

  14. Coart, E., Van Glabeke, S., De Loose, M., Larsen, A.S. & Roldan-Ruiz, I. Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol. Ecol. 15, 2171–2182 (2006).

    Article  CAS  Google Scholar 

  15. Noiton, D.A.M. & Alspach, P.A. Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J. Am. Soc. Hortic. Sci. 121, 773–782 (1996).

    Article  Google Scholar 

  16. Huson, D.H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    Article  CAS  Google Scholar 

  17. Wright, S. Evolution and the Genetics of Populations Vol. 4 (University of Chicago Press, 1978).

  18. Ng, M. & Yanofsky, M.F. Activation of the Arabidopsis B class homeotic genes by APETALA1. Plant Cell 13, 739–753 (2001).

    Article  CAS  Google Scholar 

  19. Shan, H. et al. Evolution of plant MADS Box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Mol. Biol. Evol. 26, 2229–2244 (2009).

    Article  CAS  Google Scholar 

  20. Janssen, B.J. et al. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol. 8, 16 (2008).

    Article  Google Scholar 

  21. Becker, A. & Theissen, G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464–489 (2003).

    Article  CAS  Google Scholar 

  22. Masiero, S. et al. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131, 5981–5990 (2004).

    Article  CAS  Google Scholar 

  23. Newcomb, R.D. et al. Analyses of expressed sequence tags from apple. Plant Physiol. 141, 147–166 (2006).

    Article  Google Scholar 

  24. Bieleski, R.L. Sugar alcohols. in Encyclopedia of Plant Physiology New Series Vol. 13 (eds. Loewus, F.A. & Tanner, W.) 158–192 (Springer-Verlag, Berlin, 1982).

  25. Loescher, W.H., Marlow, G.C. & Kennedy, R.A. Sorbitol metabolism and sink-source interconversions in developing apple leaves. Plant Physiol. 70, 335–339 (1982).

    Article  CAS  Google Scholar 

  26. Watari, J. et al. Identification of sorbitol transporters expressed in the phloem of apple source leaves. Plant Cell Physiol. 45, 1032–1041 (2004).

    Article  CAS  Google Scholar 

  27. Gao, Z. et al. Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol. 131, 1566–1575 (2003).

    Article  CAS  Google Scholar 

  28. Chevreau, E., Lespinasse, Y. & Gallet, M. Inheritance of pollen enzymes and polyploid origin of apple. (Malus x domestica Borkh.). Theor. Appl. Genet. 71, 268–277 (1985).

    Article  CAS  Google Scholar 

  29. Phipps, J.B., Robertson, K.R., Rohrer, J.R. & Smith, P.G. Origins and evolution of subfam. Maloideae (Rosaceae). Syst. Bot. 16, 303–332 (1991).

    Article  Google Scholar 

  30. Maliepaard, C. et al. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 97, 60–73 (1998).

    Article  CAS  Google Scholar 

  31. Celton, J.M., Tustin, D.S., Chagne, D. & Gardiner, S.E. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet. Genomes 5, 93–107 (2009).

    Article  Google Scholar 

  32. Wolfe, J. & Wehr, W.J.A. Rosaceous Chamaebatiaria-like foliage from the Paleogene of western North America. Aliso 12, 177–200 (1988).

    Article  Google Scholar 

  33. Salse, J. et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20, 11–24 (2008).

    Article  CAS  Google Scholar 

  34. Doyle, J.J. et al. Evolutionary genetics of genome merger and doubling in plants. Annu. Rev. Genet. 42, 443–461 (2008).

    Article  CAS  Google Scholar 

  35. Rieseberg, L.H., Sinervo, B., Linder, C.R., Ungerer, M.C. & Arias, D.M. Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science 272, 741–745 (1996).

    Article  CAS  Google Scholar 

  36. Yamamoto, T. et al. Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hortic. 663, 51–56 (2004).

    Article  CAS  Google Scholar 

  37. Griffiths, S. et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752 (2006).

    Article  CAS  Google Scholar 

  38. Vavilov, N.I. Wild progenitors of the fruit trees of Turkestan and the Caucasus and the problem of the origin of fruit trees. in Proceedings of the 9th International Horticultural Congress 271–286 (The Royal Horticultural Society, London, 1930).

  39. Robinson, J.P., Harris, S.A. & Juniper, B.E. Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst. Evol. 226, 35–58 (2001).

    Article  CAS  Google Scholar 

  40. Forsline, P.L., Aldwinckle, H.S., Dickson, E.E., Luby, J.J. & Hokanson, S.C. Collection, maintenance, characterization, and utilization of wild apples of Central Asia. Hortic. Rev. (Am. Soc. Hortic. Sci.) 29, 1–61 (2003).

    Google Scholar 

  41. Zohary, D. & Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley (Clarendon Press, Oxford, 1994).

  42. Gharghani, A. et al. Genetic identity and relationships of Iranian apple (Malus x domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet. Resour. Crop Evol. 56, 829–842 (2009).

    Article  CAS  Google Scholar 

  43. Luby, J. Taxonomy, classification and brief history. in Apples: Botany, Production and Uses (eds. Ferree, D.C. & Warrington, I.J.) 1–14 (CABI, Cambridge, Massachusetts, USA, 2003).

  44. Zohary, D. & Spiegelroy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).

    Article  CAS  Google Scholar 

  45. Korban, S.S. Interspecific hybridization in Malus. HortScience 21, 41–48 (1986).

    Google Scholar 

  46. Korban, S.S. & Skirvin, R.M. Nomenclature of the cultivate apple. HortScience 19, 177–180 (1984).

    Google Scholar 

  47. Lespinasse, Y., Bouvier, L., Djulbic, M. & Chevreau, E. Haploidy in apple and pear. Acta Hortic. 538, 49–54 (1999).

    Google Scholar 

  48. Tao, Q., Wang, A. & Zhang, H.B. One large-insert plant-transformation-competent BIBAC library and three BAC libraries of Japonica rice for genome research in rice and other grasses. Theor. Appl. Genet. 105, 1058–1066 (2002).

    Article  CAS  Google Scholar 

  49. Guilford, P. et al. Microsatellites in Malus X domestica (apple): abundance, polymorphism and cultivar identification. Theor. Appl. Genet. 94, 249–254 (1997).

    Article  CAS  Google Scholar 

  50. Liebhard, R. et al. Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol. Breed. 10, 217–241 (2002).

    Article  CAS  Google Scholar 

  51. Gianfranceschi, L., Seglias, N., Tarchini, R., Komjanc, M. & Gessler, C. Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet. 96, 1069–1076 (1998).

    Article  CAS  Google Scholar 

  52. Silfverberg-Dilworth, E. et al. Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet. Genomes 2, 202–224 (2006).

    Article  Google Scholar 

  53. Cartwright, D.A., Troggio, M., Velasco, R. & Gutin, A. Genetic mapping in the presence of genotyping errors. Genetics 176, 2521–2527 (2007).

    Article  CAS  Google Scholar 

  54. Uniprot Consortium. The universal protein resource (UniProt). Nucleic Acids Res. 36, D190–D195 (2008).

  55. Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    Article  CAS  Google Scholar 

  56. Solovyev, V., Kosarev, P., Seledsov, I. & Vorobyev, D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 7, S10 (2006).

    Article  Google Scholar 

  57. Korf, I., Flicek, P., Duan, D. & Brent, M.R. Integrating genomic homology into gene structure prediction. Bioinformatics 17, S140–S148 (2001).

    Article  Google Scholar 

  58. Majoros, W.H., Pertea, M. & Salzberg, S.L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).

    Article  CAS  Google Scholar 

  59. Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

    Article  CAS  Google Scholar 

  60. Fontana, P., Cestaro, A., Velasco, R., Formentin, E. & Toppo, S. Rapid annotation of anonymous sequences from genome projects using semantic similarities and a weighting scheme in gene ontology. PLoS ONE 4, e4619 (2009).

    Article  Google Scholar 

  61. Mulder, N. & Apweiler, R. InterPro and InterProScan—Tools for protein sequence classification and comparison. Methods Mol. Biol. 396, 59–70 (2007).

    Article  CAS  Google Scholar 

  62. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  63. Enright, A.J., Van Dongen, S. & Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article  CAS  Google Scholar 

  64. Simillion, C., Janssens, K., Sterck, L. & Van de Peer, Y. i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles. Bioinformatics 24, 127–128 (2008).

    Article  CAS  Google Scholar 

  65. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  66. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  PubMed  Google Scholar 

  67. Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  Google Scholar 

  68. Huelsenbeck, J.P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article  CAS  Google Scholar 

  69. Janick, J., Cummins, J.N., Brown, S.K. & Hemmat, M. Apples. in Fruit Breeding Vol. 1 (eds. Janick, J., Moore, J.J.) 1–77 (Wiley, New York, 1996).

  70. Stephens, M., Smith, N.J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).

    Article  CAS  Google Scholar 

  71. Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Italian apple genome project was supported by the research office of the Provincia Autonoma di Trento. The US apple genome project was supported by Washington State University Agriculture Research Center, Washington Tree Fruit Research Commission and US Department of Agriculture National Research Initiative (USDA-NRI) grant 2008 −35300-04676 to A.D., A.K. and R.E.B. V.K. and C.W. received support from the USDA-NRI grant. S. Schaeffer and T.K. were supported by the US National Institutes of Health Protein Biotechnology Training Program and an Achievement Rewards for College Scientists fellowship. A.C.A., V.B., D.C., A.P.G., S.E.G., R.P.H. and R.N.C. were partially supported by the New Zealand Foundation for Research Science and Technology, contract no. C06X0812. We thank S. Attiya, E. Buglione and C. Celone from 454 Life Sciences-Roche Company as well as E. Stefani, A. Castelli and E. Potenza for technical support and V. Sgaramella for critical reading of the manuscript. Fosmid and shotgun libraries were prepared following the method developed by R. Meilan (Oregon State University).

Author information

Authors and Affiliations

Authors

Contributions

R. Velasco, A.D., A.K., R.E.B., M.S., M.E., F.S. and R. Viola managed the project. R. Velasco, A.Z., J.A., A.D., A.C., A.K., P.F., S.K.B., M.T., D.P., S. Salvi, J.L., A.G., R.E.B., S.E.G., M.S., M.E., Y.V.d.P. and F.S. designed the analyses. J.A., S.K.B., D.P., M. Pindo, G.C., D.M., G.E., L.M.F., N.G., T.M., J.T.M., J.R., B.W., C.K., Z.C., B.D., F.N., M. Palmer, T.K., D.J., S. Schaeffer, V.T.C., S.T.K., J.V., Q.T., A.M., A. Stormo, K.S. and R.B. performed DNA preparation and sequencing. R. Velasco, A.Z., A.D., A.C., A.K., P.F., M.T., D.P., P.B., V.C., A.D.R., M.K., P.M., D.M., P.L., Y.L., V.B., D.C., R.N.C., S.T., C.-E.D., A.G., R.E.B. and S.E.G. contributed to sequence assembly and anchoring to chromosomes. A.Z., A.D., A.C., A.K., P.F., M.T., S. Salvi, M. Pindo, S.C., M.C., F.C., V.G., S.L., G.M., M. Malnoy, D.M., M. Moretto, M. Perazzolli, A.S.-A., S.V., E.Z., V.K., C.W., D.E., A. Stella, A.V., M.M.K., S.M., A.C.A., R.N.C., A.P.G., E.L., J.A.F., S.P., P.R., L.S., S.T., B.L., R.P.H., Y.V.d.P. and F.S. contributed to automatic and manual genome annotation, genome structure and evolution analyses. R. Velasco, A.Z., J.A., A.D., A.K., P.F., M.T., S. Salvi, F.C., M. Malnoy, A.S.-A., S.V., R.E.B., A.V., S.M., J.A.F., L.S., S.T., B.L. and F.S. wrote the paper. M.M.K., A.C.A., R.N.C., A.P.G., R.P.H., C.-E.D., A.G., R.E.B., S.E.G., M.S., Y.V.d.P. and R. Viola revised the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Riccardo Velasco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 1–10 and 12–26 and Supplementary Figures 1–16 (PDF 10993 kb)

Supplementary Table 11

Resistance-related genes of Malus x domestica (XLS 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velasco, R., Zharkikh, A., Affourtit, J. et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42, 833–839 (2010). https://doi.org/10.1038/ng.654

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng.654

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research