Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Severe acute respiratory syndrome

Abstract

Severe acute respiratory syndrome (SARS) was caused by a previously unrecognized animal coronavirus that exploited opportunities provided by 'wet markets' in southern China to adapt to become a virus readily transmissible between humans. Hospitals and international travel proved to be 'amplifiers' that permitted a local outbreak to achieve global dimensions. In this review we will discuss the substantial scientific progress that has been made towards understanding the virus—SARS coronavirus (SARS-CoV)—and the disease. We will also highlight the progress that has been made towards developing vaccines and therapies The concerted and coordinated response that contained SARS is a triumph for global public health and provides a new paradigm for the detection and control of future emerging infectious disease threats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The global spread of SARS.
Figure 2: Wet markets in Guangdong: 'Wet markets' selling live poultry, fish, reptiles and other mammals are commonplace across southeast Asia and southern China to service the cultural demand for freshly killed meat and fish produce.

(AP Photo/Xinhua, Liu Dawei)

Figure 3: Schematic diagram of the SARS coronavirus structure (reproduced from ref. 20).

Similar content being viewed by others

References

  1. Smith, M.D. Plague. in Manson's Tropical Diseases 21st edn (eds Cook, G.C. & Zumla, A.) Ch. 63, 1125–1131 (W. B. Saunders, London, 2003).

    Google Scholar 

  2. Shortridge, K.F. & Stuart-Harris, C.H. An influenza epicentre? Lancet 2, 812–813 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention. Update: outbreak of severe acute respiratory syndrome—worldwide, 2003. Morbid. Mortal. Wkly. Rpt. 52, 241–248 (2003).

  4. Tsang, K.W. et al. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1977–1985 (2003).

    Article  PubMed  Google Scholar 

  5. Lee, N. et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1986–1994 (2003).

    Article  PubMed  Google Scholar 

  6. Poutanen, S.M. et al. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 348, 1995–2005 (2003).

    Article  PubMed  Google Scholar 

  7. Peiris, J.S. et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Ksiazek, T.G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Poon, L.L. et al. Rapid diagnosis of a coronavirus associated with severe acute respiratory syndrome (SARS). Clin. Chem. 49, 953–955 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Marra, M.A. et al. The genome sequence of the SARS associated coronavirus. Science 300, 1399–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Rota, P.A. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Enserink, M. One year after outbreak. SARS virus yields some secrets. Science 304, 1097 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Peiris, J.S.M., Yuen, K.Y., Osterhaus, A.D.M.E. & Stohr, K. The severe acute respiratory syndrome. N. Engl. J. Med. 349, 2431–2441 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Christian, M.D., Poutanen, S.M., Loufty, M.R., Muller, M.P. & Low, D.E. Severe acute respiratory syndrome. Clin. Infect. Dis. 38, 1420–1427 (2004).

    Article  PubMed  Google Scholar 

  16. Rainer, T.H. Severe acute respiratory syndrome: clinical features, diagnosis and management. Curr. Opin. Pulm. Med. 10, 159–165 (2004).

    Article  PubMed  Google Scholar 

  17. Drosten, C., Preiser, W., Gunther, S., Schmitz, H. & Doerr, H.W. Severe acute respiratory syndrome: identification of the aetiologic agent. Trends Mol. Med. 9, 325–327 (2003).

    Article  PubMed  Google Scholar 

  18. Holmes, K.V. SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest. 111, 1605–1609 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davidson, A. & Siddell, S. Potential for antiviral treatment of severe acute respiratory syndrome. Curr. Opin. Infect. Dis. 26, 565–571 (2003).

    Article  Google Scholar 

  20. Stadler, K. et al. SARS—beginning to understand a new virus. Nat. Rev. Microbiol. 1, 209–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Poon, L.L.M., Guan, Y., Nicholls, N.J., Yuen, K.Y. & Peiris, J.S.M. The aetiology, origins and diagnosis of SARS. Lancet Infect. Dis. 4, 663–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Anderson, R.M. et al. Epidemiology, transmission dynamics, and control of SARS. The 2002–2003 epidemic. Phil. Trans. R. Soc. Lond. B 359, 1091–1105 (2004).

    Article  Google Scholar 

  23. Poutanen, S.M. & Low, D.E. Severe acute respiratory syndrome: an update. Curr. Opin. Infect. Dis. 17, 287–294 (2004)

    Article  PubMed  Google Scholar 

  24. Poutanen, S.M. & McGeer, A.J. Transmission and control of severe acute respiratory syndrome. Curr. Infect. Dis. Rep. 6, 220–227 (2004)

    Article  PubMed  Google Scholar 

  25. Weinstein, R.A. Planning for epidemics—the lessons of SARS. N. Engl. J. Med. 350, 2332–2334 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Zhong, N.S. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February 2003. Lancet 362, 1355–1358 (2003).

    Article  Google Scholar 

  27. Xu, R.H. et al. Epidemiologic clues to SARS origin in China. Emerg. Infect. Dis. 10, 1030–1037 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhong, N.S. & Zeng, G.Q. Our strategies for fighting severe acute respiratory syndrome (SARS). Am. J. Respir. Crit. Care Med. 168, 7–9 (2003).

    Article  PubMed  Google Scholar 

  29. Guan, Y. et al. Isolation and characterization of viruses related to SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Centers for Disease Control and Prevention. Prevalence of IgG antibody to SARS-associated coronavirus in animal traders—Guangdong Province, China, 2003. Morb. Mortal. Wkly. Rep. 52, 986–987 (2003).

  31. Klempner, M.S. & Shapiro, D.S. Crossing the species barrier—one small step to man, one giant leap to mankind. N. Engl. J. Med. 350, 1171–1172 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Snijder, E.J. et al. Unique and conserved features of genomes and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 33, 991–1004 (2003).

    Article  CAS  Google Scholar 

  33. Gorbalenya, A.E., Snijder, A.E. & Spaan, W.J. Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J. Virol. 78, 7863–7866 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. The Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004).

  35. Guan, Y. et al. Molecular epidemiology of SARS coronavirus in Hong Kong. Lancet 363, 99–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ruan, Y. et al. Comparative full-length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361, 1779–1785 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Yeh, S.H. et al. Characterization of severe acute respiratory syndrome coronavirus genomes in Taiwan: molecular epidemiology and genome evolution. Proc. Natl. Acad. Sci. USA 101, 2542–2547 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Zhong, N. Management and prevention of SARS in China. Phil. Trans. R. Soc. Lond. B. 359, 1115–1116 (2004).

    Article  Google Scholar 

  39. Liang, G. et al. Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China. Emerg. Infect. Dis. 10, 1774–1781 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wong, T.W. et al. Cluster of SARS among medical students exposed to single patient, Hong Kong. Emerg. Infect. Dis. 10, 269–276 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Seto, W.H., et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 361, 1519–1520 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Loon, S.C. et al. The severe acute respiratory syndrome coronavirus in tears. Br. J. Ophthalmol. 88, 861–863 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Leung, G.M. et al. SARS CoV antibody prevalence in all Hong Kong patient contacts. Emerg. Infect. Dis. 10, 1653–1656 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lipsitch, M. et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966–1970 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goh, D.L.M. et al. Secondary household transmission of SARS, Singapore. Emerg. Infect. Dis. 10, 232–234 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shen, Z. et al. Super-spreading SARS events in Beijing, 2003. Emerg. Infect. Dis. 10, 256–260 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Peiris, J.S. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767–1772 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Chan, K.H. et al. Detection of SARS coronavirus (SCoV) by RT-PCR, culture, and serology in patients with acute respiratory syndrome (SARS). Emerg. Infect. Dis. 10, 294–299 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chan, P.K. et al. Laboratory diagnosis of SARS. Emerg. Infect. Dis. 10, 825–830 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li, L. et al. SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMCs) from SARS patients. J. Clin. Virol. 28, 239–244 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Ng, E.K. et al. Serial analysis of the plasma concentration of SARS coronavirus RNA in pediatric patients with severe acute respiratory syndrome. Clin. Chem. 49, 2085–2088 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Wong, R.S.M. et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ 326, 1358–1362 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, T. et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J. Infect. Dis. 189, 648–651 (2004).

    Article  PubMed  Google Scholar 

  54. Leung, C.W. et al. Severe acute respiratory syndrome in children. Pediatrics 113, e535–e543 (2004).

    Article  PubMed  Google Scholar 

  55. Hon, K.L. et al. Clinical presentation and outcome of severe acute respiratory syndrome in children. Lancet 361, 1701–1703 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Drosten, C. et al. Evaluation of advanced reverse transcription PCR assays and an alternative PCR target region for detection of severe acute respiratory syndrome-associated coronavirus. J. Clin. Microbiol. 42, 2043–2047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng, P.K.C. et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet 363, 1699–1700 (2004).

    Article  PubMed  Google Scholar 

  58. Kaiser, L., Briones, M.S. & Hayden, F.G. Performance of virus isolation and Directigen Flu A to detect influenza A virus in experimental human infection. J. Clin. Virol. 14, 191–197 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Ng, E.K. et al. Quantitation analysis and prognostic implication of SARS coronavirus RNA in the plasma and serum of patients with severe acute respiratory syndrome. Clin. Chem. 49, 1976–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Hung, I.F. et al. Viral loads in clinical specimens and SARS manifestations. Emerg. Infect. Dis. 10, 1550–1557 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chu, C.M. et al. The role of lopinavir/ritonavir in treatment of SARS: initial virological and clinical findings. Thorax 59, 252–256 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mazzulli, T. et al. Severe acute respiratory syndrome–associated coronavirus in lung tissue. Emerg. Infect. Dis. 10, 20–24 (2003).

    Article  Google Scholar 

  63. Nicholls, J.M. et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet 361, 1773–1778 (2003).

    Article  PubMed  Google Scholar 

  64. Franks, T.J. et al. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum. Pathol. 34, 743–748 (2003).

    Article  PubMed  Google Scholar 

  65. Chow, K.C. et al. Detection of severe acute respiratory syndrome-associated coronavirus in pneumocytes of the lung. Am. J. Clin. Pathol. 121, 574–580 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. To, K.F. et al. Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in situ hybridization study of fatal cases. J. Pathol. 202, 157–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Nakajima, N. et al. SARS Coronavirus-infected cells in lung detected by new in situ hybridization technique. Jpn. J. Infect. Dis. 56, 139–141 (2003).

    PubMed  Google Scholar 

  68. Chong, P.Y. et al. Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore. Arch. Pathol. Lab. Med. 128, 195–204 (2004).

    PubMed  Google Scholar 

  69. Ding, Y. et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol. 203, 622–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. To, K.F. & Lo, A.W.I. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS CoV) and its putative receptor, angiotensin-converting-enzyme 2 (ACE-2). J. Pathol. 203, 740–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Leung, W.K. et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125, 1011–1017 (2003).

    Article  PubMed  Google Scholar 

  72. Chan, P.K.S. et al. Persistent infection of SARS coronavirus in colonic cells in vitro. J. Med. Virol. 74, 1–7 (2004).

    Article  PubMed  Google Scholar 

  73. Cinatl, J. et al. Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus. Cell Mol. Life Sci. 61, 2100–2112 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Yang, Z.Y. et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC SIGN. J. Virol. 78, 5642–5650 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Simmons, G. et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. USA 101, 4240–4245 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Hoffmann, H. et al. Susceptibility to SARS coronavirus S protein-derived infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem. Biophys. Res. Comm. 319, 1216–1221 (2004).

    Article  CAS  Google Scholar 

  77. Han, D.P., Kim, H.G., Kim, Y.B., Poon, L.L.M. & Cho, M.W. Development of a safe neutralization assay for SARS CoV and characterization of S-glycoprotein. Virology 326, 140–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Bosch, B.J. et al. Severe acute respiratory syndrome associated coronavirus (SARS CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl. Acad. Sci. USA 101, 8455–8460 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Liu, S. et al. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechnism and identification of fusion inhibitors. Lancet 363, 938–947 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Qinfen, Z., et al. The life cycle of SARS coronavirus in Vero E6 cells. J. Med. Virol. 73, 332–337 (2004).

    Article  PubMed  CAS  Google Scholar 

  81. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, P. et al. Expression cloning of functional receptor used by SARS coronavirus. Biochem. Biophys. Res. Commun. 315, 439–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Babcock, G.J., Esshaki, D.J., Thomas, W.D. & Ambrosino, D.M. Amino acids 270 to 510 of the severe acute respiratory syndrome spike protein are required for interaction with receptor. J. Virol. 78, 4552–4560 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lai, M.M.C. & Holmes, K.V. Coronaviridae and their replication. in Fields' Virology Vol 2. (eds Knipe, D.M. & Howley, P.M) Ch. 35, 1163–1185 (Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, 2001).

    Google Scholar 

  85. Hammling, I. et al. Tissue distribution of ACE-2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637 (2004).

    Article  CAS  Google Scholar 

  86. Yount, B. et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 100, 12995–13000 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Wong, C.K. et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136, 95–103 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y. et al. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect. Immun. 72, 4410–4415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ng, P.C. et al. Inflammatory cytokine profile in children with severe acute respiratory syndrome. Pediatrics 113, e7–e14 (2004).

    Article  PubMed  Google Scholar 

  90. Lee, C.H. et al. Altered p38 mitogen-activated protein kinase expression in different leukocytes with increment of immunosuppressive mediators in patients with severe acute respiratory syndrome. J. Immunol. 172, 7841–7847 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Peiris, J.S.M. et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363, 617–619 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Jones, B.M. et al. Prolonged disturbance of in vitro cytokine production inpatients with severe acute respiratory syndrome (SARS) treated with ribavirin and steroids. Clin. Exp. Immunol. 135, 467–473 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Openshaw, P.J.M. What does the peripheral blood tell you in SARS? Clin. Exp. Immunol. 136, 11–12 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lin, M. et al. Association of HLA class 1 with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 4, 9 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ng, M.H.L. et al. Association of human-leukocyte-antigen class 1 (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J. Infect. Dis. 190, 5151–5158 (2004).

    Article  Google Scholar 

  96. Fouchier, R.A.M. et al. Koch's postulates fulfilled for SARS virus. Nature 423, 240 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Kuiken, T. et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Rowe, T. et al. Macaque model for severe acute respiratory syndrome. J. Virol. 78, 11410–11414 (2004).

    Article  CAS  Google Scholar 

  99. Martina, B.E. et al. Virology: SARS virus infection of cats and ferrets. Nature 425, 915 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Bukreyev, A. et al. Mucosal immunisation of African green monkeys (Cercopithicus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363, 2122–2127 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol. 78, 3572–3577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Buchholtz, U.J. et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc. Natl. Acad. Sci. USA 101, 9804–9809 (2004).

    Article  Google Scholar 

  103. Roberts, A. et al. SARS coronavirus infection in Golden Syrian hamsters. J. Virol. (in the press).

  104. Wu, C.Y. et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA 101, 10012–10017 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Wu, C.J. et al. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother. 48, 2693–2696 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen, F. et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol. 31, 69–75 (2004).

    Article  PubMed  CAS  Google Scholar 

  107. Yi, Y. et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol. 78, 11334–11339 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamamoto, N. et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun. 318, 719–725 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Tan, E.L. et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg. Infect. Dis. 10, 581–586 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hensley, L.E. et al. Interferon-β 1a and SARS coronavirus replication. Emerg. Infect. Dis. 10, 317–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stroher, U. et al. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-α. J. Infect. Dis. 189, 1164–1167 (2004).

    Article  PubMed  Google Scholar 

  112. Spiegel, M., Pichlmair, A., Muhlberger, E., Haller, O. & Weber, F. The antiviral effect of interferon-β against SARS coronavirus is not mediated by MxA protein. J. Clin. Virol. 30, 211–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, X.W. & Yap, Y.L. Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic, and parasitic drugs. Bioorg. Med. Chem. 12, 2517–2521 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Haagmans, B.L. et al. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med. 10, 290–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Loutfy, M.R. et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. J. Am. Med. Assoc. 290, 3222–3228 (2003).

    Article  CAS  Google Scholar 

  116. Anand, K. et al. Coronavirus main protease (3Clpro) structure: basis for design of antiviral drugs. Science 300, 1763–1767 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Ivanov, K.A. et al. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78, 5619–5632 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. He, M.L. et al. Inhibition of SARS-associated coronavirus infection and replication by RNA interference. JAMA 290, 2665–2666 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, Z. et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNA in mammalian cells. J. Virol. 78, 7523–7527 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, Y. et al. Silencing SARS CoV spike protein expression in cultured cells by RNA interference. FEBS Lett. 560, 141–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Kao, R.Y. et al. Identification of novel small molecule inhibitors of severe acute respiratory syndrome associated coronavirus by chemical genetics. Chem. Biol. 11, 1293–1299 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Lu, L. et al. Immunological characterization of the spike protein of the severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42, 1570–1576 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, H. et al. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike protein capable of inducing neutralizing antibodies. J. Virol. 78, 6938–6945 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, Y.D. et al. T cell epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein elicit a specific T-cell immune response in patients who recover from SARS. J. Virol. 78, 5612–5618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nie, Y. et al. Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection. J. Infect. Dis. 190, 1119–1126 (2004).

    Article  PubMed  Google Scholar 

  126. Yang, Z.Y. et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428, 561–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Kim, T.W. et al. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J. Virol. 78, 4638–4645 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zeng, F. et al. Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments. Biochem. Biophys. Res. Commun. 315, 1134–1139 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Zhu, M.S. et al. Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol Lett. 92, 237–243 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Gao, W. et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 362, 1895–1896 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Bisht, H. et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc. Natl. Acad. Sci. USA 101, 6641–6646 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Takasuka, N. et al. A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int. Immunol. 16, 1423–1430 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Tang, L. et al. Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol. 23, 391–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Cavanagh, D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol. 32, 567–582 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Olsen, C.W. A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet. Microbiol. 36, 1–37 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Sui, J. et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAB to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA 101, 2536–2641 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Ter Muelen, J. et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet 363, 2139–2141 (2004).

    Article  CAS  Google Scholar 

  138. Traggian, E. et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 10, 871–875 (2004).

    Article  CAS  Google Scholar 

  139. Soo, Y.O.Y. et al. Retrospective comparison of convalescent plasma with continuing high dose methyl prednisolone treatment in SARS patients. Clin. Microbiol. Infect. 10, 657–658 (2004)

    Article  Google Scholar 

  140. Smolinski, M.S., Hamburg, M.A. & Lederberg, J. (eds). Microbial Threats to Health: Emergence, Detection and Response (National Academy Press, Washington, DC, 2003).

    Google Scholar 

  141. Li, K.S. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Mackenzie, J.S., Field, H.F. & Guyatt, K.J. Managing emerging diseases borne by fruit bats (flying foxes), with particular reference to henipaviruses and Australian bat lyssavirus. J. Appl. Microbiol. 94 Suppl, 59S–69S (2003).

    Article  PubMed  Google Scholar 

  143. Poon, L.L.M. et al. Identification of a novel coronavirus in bats. J. Virol. (in the press).

  144. Singer, P.A. et al. Ethics and SARS: Lessons from Toronto. BMJ 327, 1342–1344 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  145. O'Neill, O. Informed consent and public health. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1133–1136 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  146. World Health Organization. A multicentre collaboration to investigate the cause of severe acute respiratory syndrome. Lancet 361, 1730–1733 (2003).

  147. Fidler, D.P. Germs, governance, and global public health in the wake of SARS. J. Clin. Invest. 113, 799–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K.V. Holmes, L.L.M. Poon and J.M. Nicholls for critical comment on the manuscript; A. Frazier for scientific editing; and F. Wong for secretarial assistance. We acknowledge research funding from the United States National Institutes of Health (grant AI95357), the Wellcome Trust (grant 067072/D/02/Z) and the Research Fund for the Control of Infectious Diseases from the Government of Hong Kong Special Administrative Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S M Peiris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peiris, J., Guan, Y. & Yuen, K. Severe acute respiratory syndrome. Nat Med 10 (Suppl 12), S88–S97 (2004). https://doi.org/10.1038/nm1143

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing