Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibacterial resistance worldwide: causes, challenges and responses

Abstract

The optimism of the early period of antimicrobial discovery has been tempered by the emergence of bacterial strains with resistance to these therapeutics. Today, clinically important bacteria are characterized not only by single drug resistance but also by multiple antibiotic resistance—the legacy of past decades of antimicrobial use and misuse. Drug resistance presents an ever-increasing global public health threat that involves all major microbial pathogens and antimicrobial drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Post-therapeutic effects of antibiotic dispersion.

Similar content being viewed by others

References

  1. Levy, S. The Antibiotic Paradox: How Misuse of Antibiotics Destroys their Curative Powers (Perseus Cambridge, 2002).

    Google Scholar 

  2. Ash, C. (ed.) Trends in Microbiology vol.2, 341–422 (Elsevier, Cambridge, UK, 1994).

    Google Scholar 

  3. Levy, S.B. The challenge of antibiotic resistance. Sci. Am. 278, 46–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Levy, S.B. Microbial resistance to antibiotics. An evolving and persistent problem. Lancet 2, 83–88 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Barber, M. Infection by penicillin resistant Staphylococci. Lancet 2, 641–644 (1948).

    Article  CAS  PubMed  Google Scholar 

  6. Crofton, J. & Mitchison, D.A. Streptomycin resistance in pulmonary tuberculosis. Br. Med. J. 2, 1009–1015 (1948).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watanabe, T. Infective heredity of multidrug resistance in bacteria. Bacteriol. Rev. 27, 87–115 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Olarte, J. Antibiotic resistance in Mexico. APUA Newsletter 1, 3ff (1983).

    Google Scholar 

  9. Levy, S.B. Antibiotic resistance: consequences of inaction. Clin. Infect. Dis. 33 Suppl. 3, S124–S129 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Elwell, L., Roberts, M., Mayer, L. & Falkow, S. Plasmid-mediated β-lactamase production in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 11, 528–533 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Graaff, J., Elwell, L.P. & Falkow, S. Molecular nature of two β-lactamase-specifying plasmids isolated from Haemophilus influenzae type b. J. Bacteriol. 126, 439–446 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall, B., Roberts, M., Smith, A. & Levy, S.B. Homogeneity of transferable tetracycline resistance determinants in Hemophilus species. J. Infect. Dis. 149, 1028–1029 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. van Klingeren, B., van Embden, J.D. & Dessens-Kroon, M. Plasmid-mediated chloramphenicol resistance in Haemophilus influenzae. Antimicrob. Agents Chemother. 11, 383–387 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bloom, B.R. & Murray, C.J.L. Tuberculosis: commentary on a re-emergent killer. Science 257, 1055–1064 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Iseman, M.D. Treatment of multidrug-resistant tuberculosis. N. Engl. J. Med. [erratum appears in N. Engl. J. Med. 329, 1435 (1993)] 329, 784–791 (1993).

    Google Scholar 

  16. Walsh, F.M. & Amyes, S.G.B. Microbiology and drug resistance mechanisms of fully resistant pathogens. Curr. Opin. Microbiol. 7, 439–444 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Weinstein, R.A. Controlling antimicrobial resistance in hospitals: infection control and use of antibiotics. Emerg. Infect. Dis. 7, 188–192 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anonymous. European Antimicrobial Resistance Surveillance System. EARSS Annual Report 2002 (2002).

  19. Cosgrove, S.E. et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin. Infect. Dis. 36, 53–59 (2003).

    Article  PubMed  Google Scholar 

  20. Hiramatsu, K. Vancomycin resistance in staphylococci. Drug Resist. Updat. 1, 135–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Fridkin, S.K. Vancomycin-intermediate and -resistant Staphylococcus aureus: what the infectious disease specialist needs to know. Clin. Infect. Dis. 32, 108–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Weigel, L.M. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569–1571 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Tenover, F.C. et al. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48, 275–280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arthur, M. & Courvalin, P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37, 1563–1571 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goossens, H. The epidemiology of vancomycin-resistant enterococci. Curr. Opin. Infect. Dis. 12, 537–541 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Jones, R.N., Ballow, C.H., Biedenbach, D.J., Deinhart, J.A. & Schentag, J.J. Antimicrobial activity of quinupristin-dalfopristin (RP 59500, Synercid) tested against over 28,000 recent clinical isolates from 200 medical centers in the United States and Canada. Diagn. Microbiol. Infect. Dis. 31, 437–451 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Meka, V.G. & Gold, H.S. Antimicrobial resistance to linezolid. Clin. Infect. Dis. 39, 1010–1015 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Bush, K. New β-lactamases in Gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin. Infect. Dis. 32, 1085–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Paterson, D.L. et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum β-lactamase production in nosocomial Infections. Ann. Intern. Med. 140, 26–32 (2004).

    Article  PubMed  Google Scholar 

  30. Bradford, P.A. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology and detection of this important resistance threat. Clin. Microbiol. Rev. 14, 933–951 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nordmann, P. & Poirel, L. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect. 8, 321–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Livermore, D.M. & Woodford, N. Carbapenemases: a problem in waiting? Curr. Opin. Microbiol. 3, 489–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, H., Dzink-Fox, J.L., Chen, M. & Levy, S.B. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob. Agents Chemother. 45, 1515–1521 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zervos, M.J. et al. Relationship between fluoroquinolone use and changes in susceptibility to fluoroquinolones of selected pathogens in 10 United States teaching hospitals, 1991–2000. Clin. Infect. Dis. 37, 1643–1648 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Karlowsky, J.A., Kelly, L.J., Thornsberry, C., Jones, M.E. & Sahm, D.F. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob. Agents Chemother. 46, 2540–2545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schrag, S.J. et al. Emergence of Streptococcus pneumoniae with very-high-level resistance to penicillin. Antimicrob. Agents Chemother. 48, 3016–3023 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCormick, A.W. et al. Geographic diversity and temporal trends of antimicrobial resistance in Streptococcus pneumoniae in the United States. Nat. Med. 9, 424–430 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka, M., Nakayama, H., Haraoka, M. & Saika, T. Antimicrobial resistance of Neisseria gonorrhoeae and high prevalence of ciprofloxacin-resistant isolates in Japan, 1993 to 1998. J. Clin. Microbiol. 38, 521–525 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Centers for Disease Control and Prevention. Increases in fluoroquinolone-resistant Neisseria gonorrhoeae—Hawaii and California. Morb. Mortal. Wkly. Rep. 51, 1041–1044 (2002).

  40. Wang, S.A. et al. Multidrug-resistant Neisseria gonorrhoeae with decreased susceptibility to cefixime-Hawaii, 2001. Clin. Infect. Dis. 37, 849–852 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Vandenesch, F. et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg. Infect. Dis. 9, 978–984 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Herold, B. et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. J. Am. Med. Assoc. 279, 593–598 (1998).

    Article  CAS  Google Scholar 

  43. Anonymous. From the Centers for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus—Minnesota and North Dakota, 1997–1999. J. Am. Med. Assoc. 282, 1123–1125 (1999).

  44. Levy, S.B. Balancing the drug resistance equation. Trends Microbiol. 2, 341–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Levy, S.B. The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother. 49, 25–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Mellon, M., Benbrook, C. & Benbrook, K.L. Hogging it: estimates of antimicrobial abuse in livestock. (UCS Publications, Cambridge, UK, 2001).

    Google Scholar 

  47. Barza, M., S.L. Gorbach . The need to improve antimicrobial use in agriculture: ecological and human health consequences. Clin Infect. Dis. 34, S71–S144 (2002).

    Article  PubMed  Google Scholar 

  48. US Congress. Office of Technology Assessment. Impacts of Antibiotic Resistant Bacteria (OTA-H-629, US Government Printing Office, Washington, DC, 1995).

  49. Levy, S.B. & Miller, R.V. (eds.) Gene Transfer in the Environment (McGraw Hill, New York, 1989).

    Google Scholar 

  50. Schneiders, T., Amyes, S.G.B. & Levy, S.B. Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob. Agents Chemother. 47, 2831–2837 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piddock, L.J. Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 2 Suppl. 2, 11–18 (1999).

    Article  Google Scholar 

  52. Levy, S.B. Ecology of plasmids and unique DNA sequences. in Engineered Organisms in the Environment: Scientific Issues (eds. Halvorson, H.O., Pramer, D. & Rogul, M.) 180–190 (ASM Press, Washington DC, 1985).

    Google Scholar 

  53. Datta, N. et al. R factors in Escherichia coli in faeces after oral chemotherapy in general practice. Lancet 1, 312–315 (1971).

    Article  CAS  PubMed  Google Scholar 

  54. Moller, J.K., Bak, A.L., Stenderup, A., Zachariae, H. & Afzelius, H. Changing patterns of plasmid-mediated drug resistance during tetracycline therapy. Antimicrob. Agents Chemother. 11, 388–391 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Levy, S.B., FitzGerald, G.B. & Macone, A.B. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N. Engl. J. Med. 295, 583–588 (1976).

    Article  CAS  PubMed  Google Scholar 

  56. Summers, A.O. Generally overlooked fundamentals of bacterial genetics and ecology. Clin. Infect. Dis. 34 Suppl 3, S85–S92 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Sidhu, M.S., Heir, E., Leegaard, T., Wiger, K. & Holck, A. Frequency of disinfectant resistance genes and genetic linkage with β-lactamase transposon Tn552 among clinical staphylococci. Antimicrob. Agents Chemother. 46, 2797–2803 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barbosa, T.M. & Levy, S.B. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updat. 3, 303–311 (2000).

    Article  PubMed  Google Scholar 

  59. Seppala, H. et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N. Engl. J. Med. 337, 441–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Levy, S.B. Emergence of antibiotic-resistant bacteria in the intestinal flora of farm inhabitants. J. Infect. Dis. 137, 689–690 (1978).

    CAS  PubMed  Google Scholar 

  61. Alekshun, M.N. & Levy, S.B. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother. 41, 2067–2075 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Levy, S.B. Antibiotic resistance: an ecological imbalance, in Antibiotic Resistance: Origins, Evolution, and Spread, 1–9 (J. Wiley, Chichester, UK, 1997).

    Google Scholar 

  63. Levy, S.B. Starting life resistance-free. N. Engl. J. Med. 323, 335–337 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Miller, Y.W. et al. Sequential antibiotic therapy for acne promotes the carriage of resistant staphylococci on the skin of contacts. J. Antimicrob. Chemother. 38, 829–837 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Levy, S.B., Marshall, B., Schluederberg, S., Rowse, D. & Davis, J. High frequency of antimicrobial resistance in human fecal flora. Antimicrob. Agents Chemother. 32, 1801–1806 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walson, J.L., Marshall, B., Pokhrel, B.M., Kafle, K.K. & Levy, S.B. Carriage of antibiotic-resistant fecal bacteria in Nepal reflects proximity to Kathmandu. J. Infect. Dis. 184, 1163–1169 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Kummerer, K. & Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 9, 1203–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Rolland, R.M., Hausfater, G., Marshall, B. & Levy, S.B. Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse. Appl. Environ. Microbiol. 49, 791–794 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Corpet, D.E. Antibiotic resistance from food. N. Engl. J. Med. 318, 1206–1207 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Levy, S.B. Antibiotic resistant bacteria in food of man and animals, in Antimicrobials and Agriculture (ed. Woodbine, M.) 525–531 (Butterworths, London, 1984).

    Chapter  Google Scholar 

  71. Marshall, B., Petrowski, D. & Levy, S.B. Inter- and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage. Proc. Natl. Acad. Sci. USA 87, 6609–6613 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Vidaver, A. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34, S107–S110 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. DeFlaun, M.F. & Levy, S.B. Genes and their varied hosts, in Gene Transfer in the Environment (eds. Levy, S.B. & Miller, R.V.) 1–32 (McGraw-Hill, New York, 1989).

    Google Scholar 

  74. Cohen, M.L., Wong, E.S. & Falkow, S. Common R-plasmids in Staphylococcus aureus and Staphylococcus epidermidis during a nosocomial Staphylococcus aureus outbreak. Antimicrob. Agents Chemother. 21, 210–215 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pearman, J.W. & Grubb, W.B. Preventing the importation and establishment of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in Western Australia. APUA Newsletter 11, 1–2 (1993).

    Google Scholar 

  76. Turnidge, J., Lawson, P., Munro, R. & Benn, R. A national survey of antimicrobial resistance in Staphylococcus aureus in Australian teaching hospitals. Med. J. Aust. 150, 69–72 (1989).

    Google Scholar 

  77. Cooper, B.S. et al. Isolation measures in the hospital management of methicillin resistant Staphylococcus aureus (MRSA): systematic review of the literature. Br. Med. J. 329, 533 (2004).

    Article  CAS  Google Scholar 

  78. Livermore, D. Can better prescribing turn the tide of resistance? Nat. Rev. Microbiol. 2, 73–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Initial therapy for tuberculosis in the era of multidrug resistance. Recommendations of the Advisory Council for the Elimination of Tuberculosis. MMWR Recomm. Rep. 42, 1–8 (1993).

  80. Alekshun, M.S.B.L. Targeting virulence to prevent infection: to kill or not to kill? Drug Discovery Today: Therapeutic Strategies (in the press) (2004).

    Google Scholar 

  81. Projan, S.J. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6, 427–430 (2003).

    Article  PubMed  Google Scholar 

  82. Simon, L., Gauvin, F., Amre, D.K. & Saint-Lous, P. & Lacroix, J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin. Infect. Dis. 39, 206–217 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Markou, N. et al. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit. Care 7, R78–R83 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bifani, P.J. et al. Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. J. Am. Med. Assoc. 275, 452–457 (1996).

    Article  CAS  Google Scholar 

  85. Soares, S., Kristinsson, K.G., Musser, J.M. & Tomasz, A. Evidence for the introduction of a multiresistant clone of serotype 6B Streptococcus pneumoniae from Spain to Iceland in the late 1980s. J. Infect. Dis. 168, 158–163 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Manges, A.R. et al. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N. Engl. J. Med. 345, 1007–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. WHO. Global Strategy for Containment of Antimicrobial Resistance (WHO, Geneva, 2001).

  88. Holmberg, S.D., Solomon, S.L. & Blake, P.A. Health and economic impacts of antimicrobial resistance. Rev. Infect. Dis. 9, 1065–1078 (1987).

    Article  CAS  PubMed  Google Scholar 

  89. Rubin, R.J. et al. The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg. Infect. Dis. 5, 9–17 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Phelps, C.E. Bug/drug resistance. Sometimes less is more. Med. Care 27, 194–203 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Hall, R.M. et al. Mobile gene cassettes and integrons in evolution. Ann. NY Acad. Sci. 870, 68–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Nandi, S., Maurer, J.J., Hofacre, C. & Summers, A.O. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA 101, 7118–7122 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Clewell, D.B. & Gawron-Burke, C. Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annu. Rev. Microbiol. 40, 635–659 (1986).

    Article  CAS  PubMed  Google Scholar 

  94. Roberts, M.C. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19, 1–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Dowson, C.G., Coffey, T.J. & Spratt, B.G. Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends Microbiol. 2, 361–366 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Spratt, B.G. Resistance to antibiotics mediated by target alterations. Science 264, 388–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Balsalobre, L., Ferrandiz, M.J., Linares, J., Tubau, F. & de la Campa, A.G. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae. Antimicrob. Agents Chemother. 47, 2072–2081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Levy, S.B. Active efflux mechanisms for antimicrobial resistance. Antimicrob. Agents Chemother. 36, 695–703 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nikaido, H. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178, 5853–5859 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Levy, S.B. et al. Nomenclature for new tetracycline resistance determinants. Antimicrob. Agents Chemother. 43, 1523–1524 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McMurry, L.M. & Levy, S.B. Tetracycline resistance in gram-positive bacteria, in Gram-Positive Pathogens (ASM Press, Washington DC, 2000).

    Google Scholar 

  102. Martinez-Martinez, L., Pascual, A. & Jacoby, G.A. Quinolone resistance from a transferable plasmid. Lancet 351, 797–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, M., Sahm, D.F., Jacoby, G.A. & Hooper, D.C. Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob. Agents Chemother. 48, 1295–1299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stuart B Levy or Bonnie Marshall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, S., Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10 (Suppl 12), S122–S129 (2004). https://doi.org/10.1038/nm1145

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing