Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material

Abstract

Supercooled liquids and dense colloidal suspensions exhibit anomalous behaviour known as ‘spatially heterogeneous dynamics’ (SHD), which becomes increasingly pronounced as the system approaches the glass transition1,2,3. Recently, the observation of SHD in confined granular packings under slow shear near the onset of jamming has bolstered speculation that the two transitions are related4,5,6. Here, we report measurements of SHD in a system of air-driven granular beads, as a function of both density and effective temperature. On approach to jamming, the dynamics becomes progressively slower and more spatially heterogeneous. The rapid growth of timescales and dynamical length scales characterizing the heterogeneities can be described both by mode-coupling theory7 and the Vogel–Tammann–Fulcher (VTF) equation8, such as in glass-forming liquids. The value of the control variable at the VTF transition coincides with point J (refs 9, 10), the random close-packed jamming density at which all motion ceases, in analogy to a zero-temperature ideal glass transition. Our findings demonstrate further universality of the jamming concept and provide a significant step forward in the quest for a unified theory of jamming in disparate systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bead dynamics at area fraction φ=0.773 as a function of delay time.
Figure 2: Size distributions of clusters and strings.
Figure 3: Variation of SHD as a function of control variable φ.
Figure 4: Dependence of dynamic timescales and length scales on packing density φ.

Similar content being viewed by others

References

  1. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  ADS  Google Scholar 

  2. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    Article  ADS  Google Scholar 

  3. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  ADS  Google Scholar 

  4. Pouliquen, O., Belzons, M. & Nicolas, M. Fluctuating particle motion during shear induced granular compaction. Phys. Rev. Lett. 91, 14301 (2003).

    Article  ADS  Google Scholar 

  5. Marty, G. & Dauchot, O. Subdiffusion and cage effect in a sheared granular material. Phys. Rev. Lett. 94, 15701 (2005).

    Article  ADS  Google Scholar 

  6. Dauchot, O., Marty, G. & Biroli, G. Dynamical heterogeneity close to the jamming transition in a sheared granular material. Phys. Rev. Lett. 95, 265701 (2005).

    Article  ADS  Google Scholar 

  7. Gotze, W. & Sjogren, L. The mode coupling theory of structural relaxations. Transp. Theory Stat. Phys. 24, 801–853 (1995).

    Article  ADS  Google Scholar 

  8. Vogel, H. Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Z. 22, 645–646 (1921).

    Google Scholar 

  9. O’Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Random packings of frictionless particles. Phys. Rev. Lett. 88, 75507 (2002).

    Article  ADS  Google Scholar 

  10. O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    Article  ADS  Google Scholar 

  11. Liu, A. J. & Nagel, S. R. Nonlinear dynamics—Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  ADS  Google Scholar 

  12. Bennemann, C., Donati, C., Baschnagel, J. & Glotzer, S. C. Growing range of correlated motion in a polymer melt on cooling towards the glass transition. Nature 399, 246–249 (1999).

    Article  ADS  Google Scholar 

  13. Donati, C. et al. Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2341 (1998).

    Article  ADS  Google Scholar 

  14. Donati, C., Glotzer, S. C., Poole, P. H., Kob, W. & Plimpton, S. J. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E 60, 3107–3119 (1999).

    Article  ADS  Google Scholar 

  15. Donati, C., Franz, S., Glotzer, S. C. & Parisi, G. Theory of non-linear susceptibility and correlation length in glasses and liquids. J. Non-Cryst. Solids 307, 215–224 (2002).

    Article  ADS  Google Scholar 

  16. Glotzer, S. C., Novikov, V. N. & Schroder, T. B. Time-dependent, four-point density correlation function description of dynamical heterogeneity and decoupling in supercooled liquids. J. Chem. Phys. 112, 509–512 (2000).

    Article  ADS  Google Scholar 

  17. Chandler, D., Garrahan, J. P., Jack, R. L., Maibaum, L. & Pan, A. C. Lengthscale dependence of dynamic four-point susceptibilities in glass formers. Phys. Rev. E 74, 051501 (2006).

    Article  ADS  Google Scholar 

  18. Garrahan, J. P. & Chandler, D. Geometrical explanation and scaling of dynamical heterogeneities in glass forming systems. Phys. Rev. Lett. 89, 35704 (2002).

    Article  ADS  Google Scholar 

  19. Stevenson, J. D., Schmalian, J. & Wolynes, P. G. The shapes of cooperatively rearranging regions in glass-forming liquids. Nature Phys. 2, 268–274 (2006).

    Article  ADS  Google Scholar 

  20. Langer, J. S. Dynamics and thermodynamics of the glass transition. Phys. Rev. E 73, 41504 (2006).

    Article  ADS  Google Scholar 

  21. Abate, A. R. & Durian, D. J. Approach to jamming in an air-fluidized granular bed. Phys. Rev. E 74, 031308 (2006).

    Article  ADS  Google Scholar 

  22. Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997).

    Article  ADS  Google Scholar 

  23. Gebremichael, Y., Starr, F. W., Schroeder, T. B. & Glotzer, S. C. Spatially correlated dynamics in a simulated glass-forming polymer melt: Analysis of clustering phenomena. Phys. Rev. E 64, 051503 (2001).

    Article  ADS  Google Scholar 

  24. Gebremichael, Y., Vogel, M. & Glotzer, S. C. Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid. J. Chem. Phys. 120, 4415–4427 (2004).

    Article  ADS  Google Scholar 

  25. Vogel, M. & Glotzer, S. C. Spatially heterogeneous dynamics and dynamic facilitation in a model of viscous silica. Phys. Rev. Lett. 92, 255901 (2004).

    Article  ADS  Google Scholar 

  26. Lacevic, N., Starr, F. W., Schroder, T. B. & Glotzer, S. C. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J. Chem. Phys. 119, 7372–7387 (2003).

    Article  ADS  Google Scholar 

  27. Aichele, M., Gebremichael, Y., Starr, F. W., Baschnagel, J. & Glotzer, S. C. Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt. J. Chem. Phys. 119, 5290–5304 (2003).

    Article  ADS  Google Scholar 

  28. Stone, M. B. et al. Stress propagation: Getting to the bottom of a granular medium. Nature 427, 503–504 (2004).

    Article  ADS  Google Scholar 

  29. Corwin, E. I., Jaeger, H. M. & Nagel, S. R. Structural signature of jamming in granular media. Nature 435, 1075–1078 (2005).

    Article  ADS  Google Scholar 

  30. Silbert, L. E., Liu, A. J. & Nagel, S. R. Vibrations and diverging length scales near the unjamming transition. Phys. Rev. Lett. 95, 098301 (2005).

    Article  ADS  Google Scholar 

  31. Biroli, G. & Bouchaud, J. P. Diverging length scale and upper critical dimension in the mode-coupling theory of the glass transition. Europhys. Lett. 67, 21–27 (2004).

    Article  ADS  Google Scholar 

  32. Biroli, G., Bouchaud, J. P., Miyazaki, K. & Reichman, D. R. Inhomogeneous mode-coupling theory and growing dynamic length in supercooled liquids. Phys. Rev. Lett. 97, 195701 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under grant no. NSF-DMR0514705 (A.R.A. and D.J.D.), NASA under grant no. NNC04GA43G (A.S.K. and S.C.G.) and the Department of Education GAANN fellowship program (A.S.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharon C. Glotzer or Douglas J. Durian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keys, A., Abate, A., Glotzer, S. et al. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nature Phys 3, 260–264 (2007). https://doi.org/10.1038/nphys572

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing