Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synonymous but not the same: the causes and consequences of codon bias

Key Points

  • Codon usage varies widely between species, between genes in a genome and between sites in a gene.

  • Explanations for natural variation in codon usage fall into two categories: mutational and selective.

  • Mutational mechanisms are responsible for most codon-usage variation between species; by contrast, selection for translation efficiency accounts for much of the systematic variation across a genome (except in mammals).

  • Translationally efficient codons may increase elongation rate, accuracy or both.

  • Rapid elongation should not be expected to influence protein yield per mRNA molecule for an endogenous gene, but it may be relevant for an overexpressed transgene.

  • The codons that provide efficient translation of an overexpressed transgene may differ from the efficient codons for an endogenous gene.

  • High-throughput measurements of endogenous mRNA levels, protein levels and ribosomal occupancies provide a detailed description of translation processes.

  • Libraries of randomized genes can elucidate design principles for efficient transgene expression, even without uncovering underlying mechanisms.

Abstract

Despite their name, synonymous mutations have significant consequences for cellular processes in all taxa. As a result, an understanding of codon bias is central to fields as diverse as molecular evolution and biotechnology. Although recent advances in sequencing and synthetic biology have helped to resolve longstanding questions about codon bias, they have also uncovered striking patterns that suggest new hypotheses about protein synthesis. Ongoing work to quantify the dynamics of initiation and elongation is as important for understanding natural synonymous variation as it is for designing transgenes in applied contexts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Codon bias within and between genomes.
Figure 2: Relationships between initiation rate, elongation rate, ribosome density and the rate of protein synthesis for endogenous genes.
Figure 3: Effects of mRNA secondary structure on translation initiation in bacteria.
Figure 4: The elongation rate may influence the rate of protein synthesis for an overexpressed gene.

Similar content being viewed by others

References

  1. Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965).

    CAS  PubMed  Google Scholar 

  2. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353 (2004).

    CAS  PubMed  Google Scholar 

  3. Hershberg, R. & Petrov, D. A. Selection on codon bias. Annu. Rev. Genet. 42, 287–299 (2008).

    CAS  PubMed  Google Scholar 

  4. Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nature Rev. Genet. 7, 98–108 (2006). An excellent Review of the many surprisingly strong effects of synonymous mutations on splicing.

    CAS  PubMed  Google Scholar 

  5. Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 12, 640–649 (2002).

    CAS  PubMed  Google Scholar 

  6. Sharp, P. M., Averof, M., Lloyd, A. T., Matassi, G. & Peden, J. F. DNA sequence evolution: the sounds of silence. Philos. Trans. R. Soc. Lond. B 349, 241–247 (1995).

    CAS  Google Scholar 

  7. Andersson, S. G. & Kurland, C. G. Codon preferences in free-living microorganisms. Microbiol. Rev. 54, 198–210 (1990). A classic, must-read paper that has framed the field of codon-usage adaptation.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    CAS  PubMed  Google Scholar 

  9. Bulmer, M. The selection–mutation–drift theory of synonymous codon usage. Genetics 129, 897–907 (1991). A foundational study of both the population genetics that underlie codon bias and the biophysics of translation. This paper emphasizes that, for endogenous genes, elongation speed will not generally influence protein yield per mRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, S. L., Lee, W., Hottes, A. K., Shapiro, L. & McAdams, H. H. Codon usage between genomes is constrained by genome-wide mutational processes. Proc. Natl Acad. Sci. USA 101, 3480–3485 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hurst, L. D. & Merchant, A. R. High guanine–cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc. R. Soc. Lond. B 268, 493–497 (2001).

    CAS  Google Scholar 

  12. Fedorov, A., Saxonov, S. & Gilbert, W. Regularities of context-dependent codon bias in eukaryotic genes. Nucleic Acids Res. 30, 1192–1197 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hildebrand, F., Meyer, A. & Eyre-Walker, A. Evidence of selection upon genomic GC-content in bacteria. PLoS Genet. 6, e1001107 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Morton, B. R. Selection at the amino acid level can influence synonymous codon usage: implications for the study of codon adaptation in plastid genes. Genetics 159, 347–358 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cambray, G. & Mazel, D. Synonymous genes explore different evolutionary landscapes. PLoS Genet. 4, e1000256 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. Plotkin, J. B. & Dushoff, J. Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proc. Natl Acad. Sci. USA 100, 7152–7157 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharp, P. M. & Li, W. H. The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol. Biol. Evol. 4, 222–230 (1987).

    CAS  PubMed  Google Scholar 

  18. Eyre-Walker, A. & Bulmer, M. Synonymous substitution rates in enterobacteria. Genetics 140, 1407–1412 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Francino, M. P. & Ochman, H. Deamination as the basis of strand-asymmetric evolution in transcribed Escherichia coli sequences. Mol. Biol. Evol. 18, 1147–1150 (2001).

    CAS  PubMed  Google Scholar 

  20. Majewski, J. Dependence of mutational asymmetry on gene-expression levels in the human genome. Am. J. Hum. Genet. 73, 688–692 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Duret, L. & Mouchiroud, D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl Acad. Sci. USA 96, 4482–4487 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Akashi, H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136, 927–935 (1994). By quantifying the rates of synonymous substitutions at conserved and non-conserved positions in proteins, Akashi shows that such mutations influence translational accuracy in D. melanogaster.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Akashi, H. & Schaeffer, S. W. Natural selection and the frequency distributions of “silent” DNA polymorphism in Drosophila. Genetics 146, 295–307 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Eyre-Walker, A. Synonymous codon bias is related to gene length in Escherichia coli: selection for translational accuracy? Mol. Biol. Evol. 13, 864–872 (1996).

    CAS  PubMed  Google Scholar 

  25. Stoletzki, N. & Eyre-Walker, A. Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol. Biol. Evol. 24, 374–381 (2007).

    CAS  PubMed  Google Scholar 

  26. Drummond, D. A. & Wilke, C. O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, T., Weems, M. & Wilke, C. O. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol. Biol. Evol. 26, 1571–1580 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151, 389–409 (1981).

    CAS  PubMed  Google Scholar 

  29. Ikemura, T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J. Mol. Biol. 158, 573–597 (1982).

    CAS  PubMed  Google Scholar 

  30. Post, L. E. & Nomura, M. Nucleotide sequence of the intercistronic region preceding the gene for RNA polymerase subunit α in Escherichia coli. J. Biol. Chem. 254, 10604–10606 (1979).

    CAS  PubMed  Google Scholar 

  31. Moriyama, E. N. & Powell, J. R. Codon usage bias and tRNA abundance in Drosophila. J. Mol. Evol. 45, 514–523 (1997).

    CAS  PubMed  Google Scholar 

  32. Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet. 16, 287–289 (2000).

    CAS  PubMed  Google Scholar 

  33. Kanaya, S., Yamada, Y., Kinouchi, M., Kudo, Y. & Ikemura, T. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J. Mol. Evol. 53, 290–298 (2001).

    CAS  PubMed  Google Scholar 

  34. Sharp, P. M., Bailes, E., Grocock, R. J., Peden, J. F. & Sockett, R. E. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 33, 1141–1153 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharp, P. M. & Li, W. H. The codon Adaptation Index — a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lavner, Y. & Kotlar, D. Codon bias as a factor in regulating expression via translation rate in the human genome. Gene 345, 127–138 (2005).

    CAS  PubMed  Google Scholar 

  37. Tuller, T., Waldman, Y. Y., Kupiec, M. & Ruppin, E. Translation efficiency is determined by both codon bias and folding energy. Proc. Natl Acad. Sci. USA 107, 3645–3650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bergmann, J. E. & Lodish, H. F. A kinetic model of protein synthesis. Application to hemoglobin synthesis and translational control. J. Biol. Chem. 254, 11927–11937 (1979).

    CAS  PubMed  Google Scholar 

  39. Mathews, M. B., Sonenberg, N. & Hershey, J. W. B. (eds) Translational Control in Biology and Medicine (CHSL Press, New York, 2007).

    Google Scholar 

  40. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  41. Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. & Eisen, M. B. Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137 (2004).

    PubMed  PubMed Central  Google Scholar 

  42. Lawrence, J. G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl Acad. Sci. USA 95, 9413–9417 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Karlin, S., Campbell, A. M. & Mrazek, J. Comparative DNA analysis across diverse genomes. Annu. Rev. Genet. 32, 185–225 (1998).

    CAS  PubMed  Google Scholar 

  44. Zhang, F., Saha, S., Shabalina, S. A. & Kashina, A. Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329, 1534–1537 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Thanaraj, T. A. & Argos, P. Ribosome-mediated translational pause and protein domain organization. Protein Sci. 5, 1594–1612 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Watts, J. M. et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460, 711–716 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Warnecke, T., Batada, N. N. & Hurst, L. D. The impact of the nucleosome code on protein-coding sequence evolution in yeast. PLoS Genet. 4, e1000250 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Eskesen, S. T., Eskesen, F. N. & Ruvinsky, A. Natural selection affects frequencies of AG and GT dinucleotides at the 5′ and 3′ ends of exons. Genetics 167, 543–550 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chamary, J. V. & Hurst, L. D. Biased codon usage near intron-exon junctions: selection on splicing enhancers, splice-site recognition or something else? Trends Genet. 21, 256–259 (2005).

    CAS  PubMed  Google Scholar 

  50. Orban, T. I. & Olah, E. Purifying selection on silent sites — a constraint from splicing regulation? Trends Genet. 17, 252–253 (2001).

    CAS  PubMed  Google Scholar 

  51. Warnecke, T. & Hurst, L. D. Evidence for a trade-off between translational efficiency and splicing regulation in determining synonymous codon usage in Drosophila melanogaster. Mol. Biol. Evol. 24, 2755–2762 (2007).

    CAS  PubMed  Google Scholar 

  52. Bettany, A. J. et al. 5′-secondary structure formation, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast. Yeast 5, 187–198 (1989).

    CAS  PubMed  Google Scholar 

  53. de Smit, M. H. & van Duin, J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl Acad. Sci. USA 87, 7668–7672 (1990). A thorough study, supported by a convincing theoretical model, of how mRNA folding affects translation initiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Eyre-Walker, A. & Bulmer, M. Reduced synonymous substitution rate at the start of enterobacterial genes. Nucleic Acids Res. 21, 4599–4603 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009). Uses libraries of synthetic genes to isolate the effects of synonymous mutations on expression. See also references 81 and 97.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gu, W., Zhou, T. & Wilke, C. O. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput. Biol. 6, e1000664 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010). Shows that rare codons at the beginning of genes could help prevent 'ribosomal traffic jams'. See references 9, 58 and 59 for an alternative interpretation.

    CAS  PubMed  Google Scholar 

  58. Bulmer, M. Codon usage and intragenic position. J. Theor. Biol. 133, 67–71 (1988).

    CAS  PubMed  Google Scholar 

  59. Qin, H., Wu, W. B., Comeron, J. M., Kreitman, M. & Li, W. H. Intragenic spatial patterns of codon usage bias in prokaryotic and eukaryotic genomes. Genetics 168, 2245–2260 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, S., Goldman, E. & Zubay, G. Clustering of low usage codons and ribosome movement. J. Theor. Biol. 170, 339–354 (1994).

    CAS  PubMed  Google Scholar 

  61. Fredrick, K. & Ibba, M. How the sequence of a gene can tune its translation. Cell 141, 227–229 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cannarozzi, G. et al. A role for codon order in translation dynamics. Cell 141, 355–367 (2010).

    PubMed  Google Scholar 

  63. Zouridis, H. & Hatzimanikatis, V. Effects of codon distributions and tRNA competition on protein translation. Biophys. J. 95, 1018–1033 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    CAS  PubMed  Google Scholar 

  65. Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotech. 25, 117–124 (2007).

    CAS  Google Scholar 

  66. Vogel, C. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 6, 400 (2010). References 65 and 66 describe a quantitative proteomics approach that promises new insights into the coding-sequence determinants of protein levels.

    PubMed  PubMed Central  Google Scholar 

  67. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009). A clever method for mapping the positions of ribosomes on messages with unprecedented accuracy; an essential tool for the study of translation kinetics.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Uemura, S. et al. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464, 1012–1017 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Futcher, B., Latter, G. I., Monardo, P., McLaughlin, C. S. & Garrels, J. I. A sampling of the yeast proteome. Mol. Cell. Biol. 19, 7357–7368 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Schrimpf, S. P. et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 7, e48 (2009).

    PubMed  Google Scholar 

  71. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Feng, L. & Niu, D. K. Relationship between mRNA stability and length: an old question with a new twist. Biochem. Genet. 45, 131–137 (2007).

    CAS  PubMed  Google Scholar 

  73. Arava, Y., Boas, F. E., Brown, P. O. & Herschlag, D. Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res. 33, 2421–2432 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Welch, M., Villalobos, A., Gustafsson, C. & Minshull, J. You're one in a googol: optimizing genes for protein expression. J. R. Soc. Interface 6 (Suppl. 4), S467–S476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gouy, M. & Gautier, C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10, 7055–7074 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    CAS  PubMed  Google Scholar 

  77. Takyar, S., Hickerson, R. P. & Noller, H. F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).

    CAS  PubMed  Google Scholar 

  78. Dittmar, K. A., Sorensen, M. A., Elf, J., Ehrenberg, M. & Pan, T. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep. 6, 151–157 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Elf, J., Nilsson, D., Tenson, T. & Ehrenberg, M. Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300, 1718–1722 (2003). A detailed theoretical model of what happens to tRNA in cells under starvation conditions.

    CAS  PubMed  Google Scholar 

  80. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    CAS  PubMed  Google Scholar 

  81. Welch, M. et al. Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4, e7002 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Kudla, G., Lipinski, L., Caffin, F., Helwak, A. & Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 4, e180 (2006).

    PubMed  PubMed Central  Google Scholar 

  83. Han, J. S., Szak, S. T. & Boeke, J. D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004).

    CAS  PubMed  Google Scholar 

  84. Nackley, A. G. et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314, 1930–1933 (2006).

    CAS  PubMed  Google Scholar 

  85. Coleman, J. R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hayes, C. S., Bose, B. & Sauer, R. T. Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 3440–3445 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Spanjaard, R. A. & van Duin, J. Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc. Natl Acad. Sci. USA 85, 7967–7971 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kramer, E. B. & Farabaugh, P. J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13, 87–96 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sorensen, M. A., Kurland, C. G. & Pedersen, S. Codon usage determines translation rate in Escherichia coli. J. Mol. Biol. 207, 365–377 (1989).

    CAS  PubMed  Google Scholar 

  90. Chen, G. F. & Inouye, M. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 18, 1465–1473 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Angov, E., Hillier, C. J., Kincaid, R. L. & Lyon, J. A. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE 3, e2189 (2008).

    PubMed  PubMed Central  Google Scholar 

  92. Rosenberg, A. H., Goldman, E., Dunn, J. J., Studier, F. W. & Zubay, G. Effects of consecutive AGG codons on translation in Escherichia coli, demonstrated with a versatile codon test system. J. Bacteriol. 175, 716–722 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gursky, Y. G. & Beabealashvilli, R. The increase in gene expression induced by introduction of rare codons into the C terminus of the template. Gene 148, 15–21 (1994).

    CAS  PubMed  Google Scholar 

  94. Burgess-Brown, N. A. et al. Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr. Purif. 59, 94–102 (2008).

    CAS  PubMed  Google Scholar 

  95. Maertens, B. et al. Gene optimization mechanisms: a multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Sci. 19, 1312–1326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Supek, F. & Smuc, T. On relevance of codon usage to expression of synthetic and natural genes in Escherichia coli. Genetics 185, 1129–1134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Voges, D., Watzele, M., Nemetz, C., Wizemann, S. & Buchberger, B. Analyzing and enhancing mRNA translational efficiency in an Escherichia coli in vitro expression system. Biochem. Biophys. Res. Commun. 318, 601–614 (2004).

    CAS  PubMed  Google Scholar 

  98. El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. McDowall, K. J., Lin-Chao, S. & Cohen, S. N. A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J. Biol. Chem. 269, 10790–10796 (1994).

    CAS  PubMed  Google Scholar 

  100. Nguyen, K. L. et al. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Virology 319, 163–175 (2004).

    CAS  PubMed  Google Scholar 

  101. Sokolowski, M., Tan, W., Jellne, M. & Schwartz, S. mRNA instability elements in the human papillomavirus type 16 L2 coding region. J. Virol. 72, 1504–1515 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bauer, A. P. et al. The impact of intragenic CpG content on gene expression. Nucleic Acids Res. 38, 3891–3908 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gutman, G. A. & Hatfield, G. W. Nonrandom utilization of codon pairs in Escherichia coli. Proc. Natl Acad. Sci. USA 86, 3699–3703 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Irwin, B., Heck, J. D. & Hatfield, G. W. Codon pair utilization biases influence translational elongation step times. J. Biol. Chem. 270, 22801–22806 (1995).

    CAS  PubMed  Google Scholar 

  105. Cheng, L. & Goldman, E. Absence of effect of varying Thr-Leu codon pairs on protein synthesis in a T7 system. Biochemistry 40, 6102–6106 (2001).

    CAS  PubMed  Google Scholar 

  106. Wang, D., Johnson, A. D., Papp, A. C., Kroetz, D. L. & Sadee, W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet. Genomics 15, 3693–3704 (2005).

    Google Scholar 

  107. Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).

    CAS  PubMed  Google Scholar 

  108. Foster, H. et al. Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol. Ther. 16, 1825–1832 (2008).

    CAS  PubMed  Google Scholar 

  109. Arruda, V. R. et al. Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood 115, 4678–4688.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Fuglsang, A. The relationship between palindrome avoidance and intragenic codon usage variations: a Monte Carlo study. Biochem. Biophys. Res. Commun. 316, 755–762 (2004).

    CAS  PubMed  Google Scholar 

  111. Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nature Rev. Genet. 10, 715–724 (2009). A readable Review that summarizes the various types of errors that occur in protein synthesis, many of which are directly related to codon usage.

    PubMed  Google Scholar 

  112. Akashi, H., Kliman, R. M. & Eyre-Walker, A. Mutation pressure, natural selection, and the evolution of base composition in Drosophila. Genetica 102–103, 49–60 (1998).

    PubMed  Google Scholar 

  113. Marais, G. & Duret, L. Synonymous codon usage, accuracy of translation, and gene length in Caenorhabditis elegans. J. Mol. Evol. 52, 275–280 (2001).

    CAS  PubMed  Google Scholar 

  114. Higgs, P. G. & Ran, W. Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol. Biol. Evol. 25, 2279–2291 (2008).

    CAS  PubMed  Google Scholar 

  115. Shah, P. & Gilchrist, M. Effect of correlated tRNA abundances on translation errors and evolution of codon usage bias. PLoS Genet. 6, e1001128 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. Bernardi, G. et al. The mosaic genome of warm-blooded vertebrates. Science 228, 953–958 (1985).

    CAS  PubMed  Google Scholar 

  117. Galtier, N., Piganeau, G., Mouchiroud, D. & Duret, L. GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159, 907–911 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Urrutia, A. O. & Hurst, L. D. The signature of selection mediated by expression on human genes. Genome Res. 13, 2260–2264 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Comeron, J. M. Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence. Genetics 167, 1293–1304 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Karlin, S. & Mrazek, J. What drives codon choices in human genes? J. Mol. Biol. 262, 459–472 (1996).

    CAS  PubMed  Google Scholar 

  121. Plotkin, J. B., Robins, H. & Levine, A. J. Tissue-specific codon usage and the expression of human genes. Proc. Natl Acad. Sci. USA 101, 12588–12591 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    PubMed  PubMed Central  Google Scholar 

  123. Semon, M., Lobry, J. R. & Duret, L. No evidence for tissue-specific adaptation of synonymous codon usage in human. Mol. Biol. Evol. 23, 523–529 (2005).

    PubMed  Google Scholar 

  124. Chamary, J. V. & Hurst, L. D. Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biol. 6, R75 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Seffens, W. & Digby, D. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27, 1578–1584 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Duan, J. et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12, 205–216 (2003).

    CAS  PubMed  Google Scholar 

  127. Sharp, P. M., Tuohy, T. M. & Mosurski, K. R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 14, 5125–5143 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. dos Reis, M., Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32, 5036–5044 (2004).

    CAS  PubMed  Google Scholar 

  129. Nivinskas, R., Malys, N., Klausa, V., Vaiskunaite, R. & Gineikiene, E. Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation. J. Mol. Biol. 288, 291–304 (1999).

    CAS  PubMed  Google Scholar 

  130. Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl Acad. Sci. USA 87, 8301–8305 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Paulus, M., Haslbeck, M. & Watzele, M. RNA stem-loop enhanced expression of previously non-expressible genes. Nucleic Acids Res. 32, e78 (2004).

    PubMed  PubMed Central  Google Scholar 

  132. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nature Struct. Mol. Biol. 16, 274–280 (2009).

    CAS  Google Scholar 

  133. Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28, 292 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J. & Muzyczka, N. A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Markham, N. R. & Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33, W577–W581 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lesnik, E. A. et al. Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res. 29, 3583–3594 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S. & Cohen, S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl Acad. Sci. USA 99, 9697–9702 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    CAS  PubMed  Google Scholar 

  139. Jacobs, G. H. et al. Transterm: a database to aid the analysis of regulatory sequences in mRNAs. Nucleic Acids Res. 37, D72–D76 (2009).

    CAS  PubMed  Google Scholar 

  140. Peden, J. F. Analysis of Codon Usage. Thesis, Dept of Genetics, Univ. Nottingham (1999).

    Google Scholar 

  141. Supek, F. & Vlahovicek, K. INCA: synonymous codon usage analysis and clustering by means of self-organizing map. Bioinformatics 20, 2329–2330 (2004).

    CAS  PubMed  Google Scholar 

  142. Pagani, F., Raponi, M. & Baralle, F. E. Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc. Natl Acad. Sci. USA 102, 6368–6372 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Burge, C., Campbell, A. M. & Karlin, S. Over- and under-representation of short oligonucleotides in DNA sequences. Proc. Natl Acad. Sci. USA 89, 1358–1362 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics 7, 285 (2006).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Hurst and C. Wilke for helpful discussions. We apologize to those whose work we were unable to cite because of space constraints. G.K. acknowledges funding from the Wellcome Trust. J.B.P. acknowledges support from the Burroughs Wellcome Fund, the David and Lucile Packard Foundation, the James S. McDonnell Foundation, the Alfred P. Sloan Foundation, the Defense Advanced Research Projects Agency (HR0011-05-1-0057) and the US National Institute of Allergy and Infectious Diseases (2U54AI057168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua B. Plotkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Joshua Plotkin's homepage

Glossary

Iso-accepting tRNAs

A subset of tRNAs that carry the same amino acid.

Negative selection

A form of natural selection that suppresses alternative genetic variants in favour of the wild type.

Horizontal gene transfer

The transfer of genetic material from one species into another.

Isochore

A large fragment of a chromosome that is characterized by homogeneous GC content.

Ribosomal pausing

A temporary arrest of the ribosome during translation elongation.

Effective population size

The number of individuals in a population that produce viable offspring.

Biased gene conversion

A recombination event in which one variant of genomic sequence is preferentially 'copied and pasted' onto another one.

Fourfold degenerate sites

Positions within the coding sequence of a gene at which all four nucleotides encode the same amino acid.

Shotgun proteomics

Methods of quantifying protein levels in a complex sample, typically using mass spectrometry.

Codon adaptation index

A measure of similarity between the codon usage of a gene and the average codon usage of highly expressed genes in a species.

RNA–seq

Quantitative analysis of RNA in a complex sample by high-throughput sequencing.

Ribosomal footprint

A fragment of mRNA that is protected by ribosomes from nuclease digestion in a ribosomal-profiling experiment.

Upstream ORFs

ORFs that are located 5′ from the primary ORF. They are thought to inhibit translation of the primary ORF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotkin, J., Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12, 32–42 (2011). https://doi.org/10.1038/nrg2899

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg2899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing