Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer vaccines: between the idea and the reality

Key Points

  • Challenges facing all vaccines, including cancer vaccines, are outlined. The relative importance of the choice of antigen, choice of adjuvant and the type of elicited immunity is discussed.

  • The importance of using well-defined tumour antigens is emphasized and progress in their identification and characterization is reviewed.

  • Specific challenges facing cancer vaccines are outlined. The importance of age-induced changes in the immune system, tumour-induced immunosuppression, inefficient memory generation in the presence of chronic antigen and immune evasion is discussed.

  • Pre-clinical and clinical efforts in designing and testing therapeutic cancer vaccines are reviewed.

  • Prophylactic use of vaccines against viruses that are known to be aetiological causes of specific cancers is discussed.

  • A case is made for the prophylactic use of vaccines on the basis of shared, non-viral, tumour antigens.

Abstract

Whether vaccines are designed to prepare the immune system for the encounter with a pathogen or with cancer, certain common challenges need to be faced, such as what antigen and what adjuvant to use, what type of immune response to generate and how to make it long lasting. Cancer, additionally, presents several unique hurdles. Cancer vaccines must overcome immune suppression exerted by the tumour, by previous therapy or by the effects of advanced age of the patient. If used for cancer prevention, vaccines must elicit effective long-term memory without the potential of causing autoimmunity. This article addresses the common and the unique challenges to cancer vaccines and the progress that has been made in meeting them. Considering how refractory cancer has been to standard therapy, efforts to achieve immune control of this disease are well justified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A probable model of the evolution and fate of antitumour immune responses that develop coincidently with tumour growth.
Figure 2: Manipulation of antitumour immune responses by therapeutic vaccination.
Figure 3: Manipulation of antitumour immune responses by prophylactic vaccination.

Similar content being viewed by others

References

  1. Jenner, E. in Sampson Low (Soho, London, 1798).

    Google Scholar 

  2. Andre, F. E. Vaccinology: past achievements, present roadblocks and future promises. Vaccine 21, 593–595 (2003).

    Article  PubMed  Google Scholar 

  3. Ward, S. et al. Immunotherapeutic potential of whole tumour cells. Cancer Immunol. Immunother. 51, 351–357 (2002).

    Article  PubMed  Google Scholar 

  4. Jaffee, E. M. et al. Novel allogeneic granulocyte–macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J. Clin. Oncol. 19, 145–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Dranoff, G. GM-CSF-based cancer vaccines. Immunol. Rev. 188, 147–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Ludewig, B. et al. M. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 191, 795–804 (2000). This paper shows data from transgenic mice that a dendritic cell (DC)-based vaccine with antigens that are expressed by tumours, as well as by various normal tissues, can cause fatal autoimmune diseases, such as autoimmune diabetes, arteritis and myocarditis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Overwijk, W. W. et al. Vaccination with a recombinant vaccinia virus encoding a 'self' antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA 96, 2982–2987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Elsas, A. et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med. 194, 481–489 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002). This paper convincingly illustrates the power of tumour-specific T cells directed against self/differentiation antigens that are overexpressed by tumours. Adoptive transfer of these cells into metastatic melanoma patients resulted in the regression of melanoma, but also in the onset of vitiligo — autoimmune melanocyte destruction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heimberger, A. B. et al. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery 50, 158–166 (2002).

    PubMed  Google Scholar 

  11. Pupa, S. M. et al. Prevention of spontaneous neu-expressing mammary tumor development in mice transgenic for rat proto-neu by DNA vaccination. Gene Ther. 8, 75–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Soares, M. M., Mehta, V. & Finn, O. J. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J. Immunol. 166, 6555–6563 (2001). This paper shows the importance of not only the right antigen, but also the right adjuvant for an effective antitumour vaccine. Mucin 1 peptide was administered in three different vaccine preparations. All induced immune responses, but only one (DCs loaded with mucin 1) induced tumour rejection. The effective immune response did not cause autoimmunity in mucin 1-transgenic mice.

    Article  CAS  PubMed  Google Scholar 

  13. Van Der Bruggen, P. et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188, 51–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Henderson, R. A. & Finn, O. J. Human tumor antigens are ready to fly. Adv. Immunol. 62, 217–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J. & Chen, Y. T. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev. 188, 22–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Apostolopoulos, V., Pietersz, G. A. & McKenzie, I. F. MUC1 and breast cancer. Curr. Opin. Mol. Ther. 1, 98–103 (1999).

    CAS  PubMed  Google Scholar 

  17. Disis, M. et al. Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J. Clin. Oncol. 20, 2624–2632 (2002). The authors show that a vaccine based on HER2/NEU peptides that contain potential epitopes for T helper (T H ) cells, can elicit in patients with cancer, immunity to the peptides, as well as the whole protein, and provoke endogenous immune responses that lead to epitope spreading.

    Article  CAS  PubMed  Google Scholar 

  18. Chomez, P. et al. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 61, 5544–5551 (2001).

    CAS  PubMed  Google Scholar 

  19. Tanaka, Y., Amos, K. D., Fleming, T. P., Eberlein, T. J. & Goedegebuure, P. S. Mammaglobin-A is a tumor-associated antigen in human breast carcinoma. Surgery 133, 74–80 (2003).

    Article  PubMed  Google Scholar 

  20. Schlom, J. et al. Strategies for the development of recombinant vaccines for the immunotherapy of breast cancer. Breast Cancer Res. Treat. 38, 27–39 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Kao, H. et al. Identification of cyclin B1 as a shared human epithelial tumor-associated antigen recognized by T cells. J. Exp. Med. 194, 1313–1323 (2001). This paper defines a cell-cycle regulatory protein cyclin B1 as a target of human CD8+ T-cell responses. Cyclin B1 is aberrantly expressed by many cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jager, D. et al. Cancer-testis antigens and ING1 tumor suppressor gene product are breast cancer antigens: characterization of tissue-specific ING1 transcripts and a homologue gene. Cancer Res. 59, 6197–6204 (1999).

    CAS  PubMed  Google Scholar 

  23. Nestle, F. O. Vaccines and melanoma. Clin. Exp. Dermatol. 27, 597–601 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Srivastava, P. K. Immunotherapy of human cancer: lessons from mice. Nature Immunol. 1, 363–366 (2000).

    CAS  Google Scholar 

  25. Gendler, S. J. & Mukherjee, P. Spontaneous adenocarcinoma mouse models for immunotherapy. Trends Mol. Med. 7, 471–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Greiner, J. W., Zeytin, H., Anver, M. R. & Schlom, J. Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumours in the absence of autoimmunity. Cancer Res. 62, 6944–6951 (2002). This paper shows the efficacy of a carcinoembryonic antigen (CEA) vaccine against spontaneous intestinal tumours in genetically predisposed mice. The vaccine generated a strong anti-CEA response that reduced the tumour incidence and increased overall survival without causing autoimmunity.

    CAS  PubMed  Google Scholar 

  27. Meng, W. S. et al. α-Fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer Res. 61, 8782–8786 (2001).

    CAS  PubMed  Google Scholar 

  28. Ranieri, E. et al. Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol. Invest. 29, 121–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Butterfield, L. H. et al. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin. Cancer Res. 9, 998–1008 (2003).

    CAS  PubMed  Google Scholar 

  30. Salgaller, M. L. & Lodge, P. A. Use of cellular and cytokine adjuvants in the immunotherapy of cancer. J. Surg. Oncol. 68, 122–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Medzhitov, R. CpG DNA: security code for host defense. Nature Immunol. 2, 15–16 (2001).

    Article  CAS  Google Scholar 

  32. Krug, A. et al. CpG-A oligonucleotides induce a monocyte-derived dendritic cell-like phenotype that preferentially activates CD8 T cells. J. Immunol. 170, 3468–3477 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Janeway, C. A., Jr & Medzhitov, R. Lipoproteins take their toll on the host. Curr. Biol. 9, R879–R882 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Sieling, P. A., Chung, W., Duong, B. T., Godowski, P. J. & Modlin, R. L. Toll-like receptor 2 ligands as adjuvants for human TH1 responses. J. Immunol. 170, 194–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Kovacsovics-Bankowski, M. & Rock, K. L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Gupta, R. K., Singh, M. & O'Hagan, D. T. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug Deliv. Rev. 32, 225–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Lo-Man, R. et al. A recombinant virus-like particle system derived from parvovirus as an efficient antigen carrier to elicit a polarized TH1 immune response without adjuvant. Eur. J. Immunol. 28, 1401–1407 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi, H., Takeshita, T., Morein, B., Putney, S., Germain, R. N. & Berzofsky, J. A. Induction of CD8+ cytotoxic T cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature 344, 873–875 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Eriksson, K. & Holmgren, J. Recent advances in mucosal vaccines and adjuvants. Curr. Opin. Immunol. 14, 666–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Cook, D. N. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Csencsits, K. L., Jutila, M. A. & Pascual, D. W. Mucosal addressin expression and binding-interactions with naive lymphocytes vary among the cranial, oral, and nasal-associated lymphoid tissues. Eur. J. Immunol. 32, 3029–3039 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Williamson, E., Bilsborough, J. M. & Viney, J. L. Regulation of mucosal dendritic cell function by receptor activator of NF-κB (RANK)/RANK ligand interactions: impact on tolerance induction. J. Immunol. 169, 3606–3612 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Medzhitov, R. & Janeway, C., Jr. The Toll receptor family and microbial recognition. Trends Microbiol. 8, 452–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Tatsumi, T. et al. Disease-associated bias in T helper type 1 (TH1)/TH2 CD4+ T cell responses against MAGE-6 in HLA-DRB10401+ patients with renal cell carcinoma or melanoma. J. Exp. Med. 196, 619–628 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis, T. A., Maloney, D. G., Czerwinski, D. K., Liles, T. M. & Levy, R. Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin's lymphoma without eradicating the malignant clone. Blood 92, 1184–1190 (1998).

    CAS  PubMed  Google Scholar 

  48. Vogel, C. et al. First-line, single-agent Herceptin(trastuzumab) in metastatic breast cancer: a preliminary report. Eur. J. Cancer 37, S25–S29 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Riethmuller, G. et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. German Cancer Aid 17-1A Study Group. Lancet 343, 1177–1183 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Hsu, F. J. et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma — long-term results of a clinical trial. Blood 89, 3129–3135 (1997).

    CAS  PubMed  Google Scholar 

  51. Livingston, P. O. et al. Vaccines containing purified GM2 ganglioside elicit GM2 antibodies in melanoma patients. Proc. Natl Acad. Sci. USA 84, 2911–2915 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parmiani, G. et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J. Natl Cancer Inst. 94, 805–818 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Zinkernagel, R. M. On differences between immunity and immunological memory. Curr. Opin. Immunol. 14, 523–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Sallusto, F., Langenkamp, A., Geginat, J. & Lanzavecchia, A. Functional subsets of memory T cells identified by CCR7 expression. Curr. Top. Microbiol. Immunol. 251, 167–171 (2000).

    CAS  PubMed  Google Scholar 

  56. Harrington, L. E., Galvan, M., Baum, L. G., Altman, J. D. & Ahmed, R. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med. 191, 1241–1246 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fernando, G. J., Khammanivong, V., Leggatt, G. R., Liu, W. J. & Frazer, I. H. The number of long-lasting functional memory CD8+ T cells generated depends on the nature of the initial nonspecific stimulation. Eur. J. Immunol. 32, 1541–1549 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Xiang, R., Lode, H. N., Gillies, S. D. & Reisfeld, R. A. T cell memory against colon carcinoma is long-lived in the absence of antigen. J. Immunol. 163, 3676–3683 (1999).

    CAS  PubMed  Google Scholar 

  59. Mortarini, R. et al. Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+ T cells in melanoma patients receiving interleukin 12. Cancer Res. 60, 3559–3568 (2000).

    CAS  PubMed  Google Scholar 

  60. Feuerer, M. et al. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nature Med. 7, 452–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Zajac, A. J., Murali-Krishna, K., Blattman, J. N. & Ahmed, R. Therapeutic vaccination against chronic viral infection: the importance of cooperation between CD4+ and CD8+ T cells. Curr. Opin. Immunol. 10, 444–449 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. van der Burg, S. H. et al. Long lasting p53-specific T cell memory responses in the absence of anti-p53 antibodies in patients with resected primary colorectal cancer. Eur. J. Immunol. 31, 146–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Gao, F. G. et al. Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res. 62, 6438–6441 (2002).

    CAS  PubMed  Google Scholar 

  64. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  65. Elrefaei, M., Blank, K. J. & Murasko, D. M. Decreased IL-2, IFN-γ, and IL-10 production by aged mice during the acute phase of E55+ retrovirus infection. Virology 299, 8–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Kapasi, Z. F., Murali-Krishna, K., McRae, M. L. & Ahmed, R. Defective generation but normal maintenance of memory T cells in old mice. Eur. J. Immunol. 32, 1567–1573 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Khare, V., Sodhi, A. & Singh, S. M. Age-dependent alterations in the tumoricidal functions of tumor-associated macrophages. Tumour Biol. 20, 30–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Lu, Y. F. & Cerny, J. Repertoire of antibody response in bone marrow and the memory response are differentially affected in aging mice. J. Immunol. 169, 4920–4927 (2002).

    Article  PubMed  Google Scholar 

  69. Garcia, G. G. & Miller, R. A. Age-dependent defects in TCR-triggered cytoskeletal rearrangement in CD4+ T cells. J Immunol. 169, 5021–5027 (2002).

    Article  PubMed  Google Scholar 

  70. Miller, R. A. & Chrisp, C. T cell subset patterns that predict resistance to spontaneous lymphoma, mammary adenocarcinoma, and fibrosarcoma in mice. J. Immunol. 169, 1619–1625 (2002). This and other papers by the first author focus on age-induced changes in the immune system that contribute to carcinogenesis and could affect the success of cancer vaccines.

    Article  CAS  PubMed  Google Scholar 

  71. Provinciali, M., Smorlesi, A., Donnini, A., Bartozzi, B. & Amici, A. Low effectiveness of DNA vaccination against HER-2/neu in ageing. Vaccine 21, 843–848 (2003). This paper shows a clear difference in the response of young versus old mice to a HER2/NEU-containing cancer vaccine and the difference in the immune-effector mechanisms that are generated.

    Article  CAS  PubMed  Google Scholar 

  72. Bansal-Pakala, P. & Croft, M. Defective T cell priming associated with aging can be rescued by signaling through 4-1BB (CD137). J. Immunol. 169, 5005–5009 (2002).

    Article  PubMed  Google Scholar 

  73. Egen, J. G., Kuhns, M. S. & Allison, J. P. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunol. 3, 611–618 (2002).

    Article  CAS  Google Scholar 

  74. Maletto, B., Ropolo, A., Moron, V. & Pistoresi-Palencia, M. C. CpG-DNA stimulates cellular and humoral immunity and promotes TH1 differentiation in aged BALB/c mice. J. Leukoc. Biol. 72, 447–454 (2002).

    CAS  PubMed  Google Scholar 

  75. Geiger, J. D. et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res. 61, 8513–8519 (2001).

    CAS  PubMed  Google Scholar 

  76. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 3, 991–998 (2002).

    Article  CAS  Google Scholar 

  77. Ishida, T., Oyama, T., Carbone, D. P. & Gabrilovich, D. I. Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J. Immunol. 161, 4842–4851 (1998).

    CAS  PubMed  Google Scholar 

  78. Shurin, G. V. et al. Human prostate cancer blocks the generation of dendritic cells from CD34+ hematopoietic progenitors. Eur. Urol. 39, S37–S40 (2001).

    Article  Google Scholar 

  79. Mizoguchi, H. et al. Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258, 1795–1798 (1992). The original paper that describes tumour-induced suppression of T cells in mice with tumours.

    Article  CAS  PubMed  Google Scholar 

  80. Finke, J., Ferrone, S., Frey, A., Mufson, A. & Ochoa, A. Where have all the T cells gone? Mechanisms of immune evasion by tumors. Immunol. Today. 20, 158–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Garcia-Hernandez, M. L., Hernandez-Pando, R., Gariglio, P. & Berumen, J. Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunol. 105, 231–243 (2002).

    Article  CAS  Google Scholar 

  82. Lin, C. M., Wang, F. H. & Lee, P. K. Activated human CD4+ T cells induced by dendritic cell stimulation are most sensitive to transforming growth factor-β: implications for dendritic cell immunization against cancer. Clin. Immunol. 102, 96–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Skinnider, B. F. & Mak, T. W. The role of cytokines in classical Hodgkin lymphoma. Blood 99, 4283–4297 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Friberg, M. et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int. J. Cancer 101, 151–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmielau, J. & Finn, O. J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61, 4756–4760 (2001).

    CAS  PubMed  Google Scholar 

  87. Ahlers, J. D. et al. A push-pull approach to maximize vaccine efficacy: abrogating suppression with an IL-13 inhibitor while augmenting help with granulocyte/macrophage colony-stimulating factor and CD40L. Proc. Natl Acad. Sci. USA 99, 13020–13025 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  89. Meidenbauer, N., Gooding, W., Spitler, L., Harris, D. & Whiteside, T. L. Recovery of ζ-chain expression and changes in spontaneous IL-10 production after PSA-based vaccines in patients with prostate cancer. Br. J. Cancer 86, 168–178 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liyanage, U. K. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169, 2756–2761 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Piccirillo, C. A. & Shevach, E. M. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol. 167, 1137–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Golgher, D., Jones, E., Powrie, F., Elliott, T. & Gallimore, A. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur. J. Immunol. 32, 3267–3275 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Mitchell, M. S. et al. Active specific immunotherapy for melanoma: phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res. 48, 5883–5893 (1988).

    CAS  PubMed  Google Scholar 

  94. Morton, D. L. et al. Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann. Surg. 236, 438–449 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bystryn, J. C. et al. Immunogenicity of a polyvalent melanoma antigen vaccine in humans. Cancer 61, 1065–1070 (1988).

    Article  CAS  PubMed  Google Scholar 

  96. Miller, K. et al. Improved survival of patients with melanoma with an antibody response to immunization to a polyvalent melanoma vaccine. Cancer 75, 495–502 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Mitchell, M. S. Perspective on allogeneic melanoma lysates in active specific immunotherapy. Semin. Oncol. 25, 623–635 (1998).

    CAS  PubMed  Google Scholar 

  98. Berd, D., Sato, T., Cohn, H., Maguire, H. C., Jr & Mastrangelo, M. J. Treatment of metastatic melanoma with autologous, hapten-modified melanoma vaccine: regression of pulmonary metastases. Int. J. Cancer 94, 531–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Mach, N. & Dranoff, G. Cytokine-secreting tumor cell vaccines. Curr. Opin. Immunol. 12, 571–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Belli, F. et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol. 20, 4169–4180 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Salgia, R. et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte–macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J. Clin. Oncol. 21, 624–630 (2003).

    Article  PubMed  Google Scholar 

  102. Nestle, F. O., Banchereau, J. & Hart, D. Dendritic cells: on the move from bench to bedside. Nature Med. 7, 761–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Celluzzi, C. M. & Falo, L. D., Jr. Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection. J. Immunol. 160, 3081–3085 (1998).

    CAS  PubMed  Google Scholar 

  104. Nouri-Shirazi, M. et al. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J. Immunol. 165, 3797–3803 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Chang, A. E. et al. A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin. Cancer Res. 8, 1021–1032 (2002).

    CAS  PubMed  Google Scholar 

  106. Heiser, A. et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J. Immunol. 166, 2953–2960 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Nair, S. K. et al. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg. 235, 540–549 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Condon, C., Watkins, S. C., Celluzzi, C. M., Thompson, K. & Falo, L. D., Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nature Med. 2, 1122–1128 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Whiteside, T. L., Gambotto, A., Albers, A., Stanson, J. & Cohen, E. P. Human tumor-derived genomic DNA transduced into a recipient cell induces tumor-specific immune responses ex vivo. Proc. Natl Acad. Sci. USA 99, 9415–9420 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Heiser, A. et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109, 409–417 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goydos, J. S., Elder, E., Whiteside, T. L., Finn, O. J. & Lotze, M. T. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res. 63, 298–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Khleif, S. N. et al. A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J. Immunother. 22, 155–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Massaia, M. et al. Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood 94, 673–683 (1999).

    CAS  PubMed  Google Scholar 

  114. van Driel, W. J. et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur. J. Cancer 35, 946–952 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Brossart, P. et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96, 3102–3108 (2000).

    CAS  PubMed  Google Scholar 

  116. Marshall, J. L. et al. Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol. 18, 3964–3973 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Banchereau, J. et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 61, 6451–6458 (2001).

    CAS  PubMed  Google Scholar 

  118. Schuler-Thurner, B. et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med. 195, 1279–1288 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Knutson, K. L., Schiffman, K. & Disis, M. L. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J. Clin. Invest. 107, 477–484 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van der Burg, S. H. et al. Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clin. Cancer Res. 8, 1019–1027 (2002).

    CAS  PubMed  Google Scholar 

  121. Marchand, M. et al. Immunisation of metastatic cancer patients with MAGE-3 protein combined with adjuvant SBAS-2: a clinical report. Eur. J. Cancer 39, 70–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Finn, O. J. & Forni, G. Prophylactic cancer vaccines. Curr. Opin. Immunol. 14, 172–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Schultz, J. Success of vaccine offers promise of cervical cancer prevention. J. Natl Cancer Inst. 95, 102–104 (2003).

    Article  PubMed  Google Scholar 

  124. Welters, M. J. et al. Frequent display of human papillomavirus type 16 E6-specific memory T-helper cells in the healthy population as witness of previous viral encounter. Cancer Res. 63, 636–641 (2003).

    CAS  PubMed  Google Scholar 

  125. Plummer, M. & Franceschi, S. Strategies for HPV prevention. Virus Res. 89, 285–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Huang, K. & Lin, S. Nationwide vaccination: a success story in Taiwan. Vaccine 18, S35–S38 (2000).

    Article  PubMed  Google Scholar 

  127. Viviani, S. et al. Hepatitis B vaccination in infancy in The Gambia: protection against carriage at 9 years of age. Vaccine 17, 2946–2950 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Lollini, P. L. et al. Immunoprevention of colorectal cancer: a future possibility? Gastroenterol. Clin. North Am. 31, 1001–1014 (2002).

    Article  PubMed  Google Scholar 

  129. Lollini, P. L. & Forni, G. Antitumor vaccines: is it possible to prevent a tumor? Cancer Immunol. Immunother. 51, 409–416 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Muderspach, L. et al. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin. Cancer Res. 6, 3406–3416 (2000).

    CAS  PubMed  Google Scholar 

  131. Finn, O. J. et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol. Rev. 145, 61–89 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Domenech, N., Henderson, R. A. & Finn, O. J. Identification of an HLA-A11-restricted epitope from the tandem repeat domain of the epithelial tumor antigen mucin. J. Immunol. 155, 4766–4774 (1995).

    CAS  PubMed  Google Scholar 

  133. Hiltbold, E. M., Ciborowski, P. & Finn, O. J. Naturally processed class II epitope from the tumor antigen MUC1 primes human CD4+ T cells. Cancer Res. 58, 5066–5070 (1998).

    CAS  PubMed  Google Scholar 

  134. Hiltbold, E. M., Alter, M. D., Ciborowski, P. & Finn, O. J. Presentation of MUC1 tumor antigen by class I MHC and CTL function correlate with the glycosylation state of the protein taken up by dendritic cells. Cell. Immunol. 194, 143–149 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Vlad, A. M. et al. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J. Exp. Med. 196, 1435–1446 (2002). An important observation that glycoprotein tumour antigens might be a source of glycopeptides that are processed and presented by MHC class II molecules to glycopeptide-specific T H cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Apostolopoulos, V., Karanikas, V., Haurum, J. S. & McKenzie, I. F. Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen. J. Immunol. 159, 5211–5218 (1997).

    CAS  PubMed  Google Scholar 

  137. Brossart, P. et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93, 4309–4317 (1999).

    CAS  PubMed  Google Scholar 

  138. Lees, C. J. et al. Immunotherapy with mannan-MUC1 and IL-12 in MUC1 transgenic mice. Vaccine 19, 158–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Mukherjee, P. et al. Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred. J. Immunol. 165, 3451–3460 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Pecher, G. & Finn, O. J. Induction of cellular immunity in chimpanzees to human tumor-associated antigen mucin by vaccination with MUC-1 cDNA-transfected Epstein–Barr virus-immortalized autologous B cells. Proc. Natl Acad. Sci. USA 93, 1699–1704 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Barratt-Boyes, S. M., Vlad, A. & Finn, O. J. Immunization of chimpanzees with tumor antigen MUC1 mucin tandem repeat peptide elicits both helper and cytotoxic T-cell responses. Clin. Cancer Res. 5, 1918–1924 (1999).

    CAS  PubMed  Google Scholar 

  142. Carr-Brendel, V. et al. Immunity to murine breast cancer cells modified to express MUC-1, a human breast cancer antigen, in transgenic mice tolerant to human MUC-1. Cancer Res. 60, 2435–2443 (2000).

    CAS  PubMed  Google Scholar 

  143. Grosenbach, D. W., Barrientos, J. C., Schlom, J. & Hodge, J. W. Synergy of vaccine strategies to amplify antigen-specific immune responses and antitumor effects. Cancer Res. 61, 4497–4505 (2001).

    CAS  PubMed  Google Scholar 

  144. Xiang, R. et al. Protective immunity against human carcinoembryonic antigen (CEA) induced by an oral DNA vaccine in CEA-transgenic mice. Clin. Cancer Res. 7, S856–S864 (2001).

    Google Scholar 

  145. Cole, D. J. et al. Phase I study of recombinant CEA vaccinia virus vaccine with post vaccination CEA peptide challenge. Hum. Gene Ther. 7, 1381–1394 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Nanni, P. et al. Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J. Exp. Med. 194, 1195–1205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Timmerman, J. M. & Levy, R. The history of the development of vaccines for the treatment of lymphoma. Clin. Lymphoma 1, 129–139; discussion 140 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Hruban, R. H. et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am. J. Surg. Pathol. 25, 579–586 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Nelson, W. G. et al. Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann. NY Acad. Sci. 952, 135–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Burgart, L. J. Colorectal polyps and other precursor lesions. Need for an expanded view. Gastroenterol. Clin. North Am. 31, 959–970 (2002).

    Article  PubMed  Google Scholar 

  151. Pfau, P. & Chak, A. Detection of preinvasive cancer cells: early-warning changes in precancerous epithelial cells can now be spotted in situ and endoscopic detection of dysplasia in patients with Barrett's esophagus using light-scattered spectroscopy. Gastrointest. Endosc. 54, 414–416 (2001).

    CAS  PubMed  Google Scholar 

  152. Kauff, N. D. et al. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N. Engl. J. Med. 346, 1609–1615 (2002).

    Article  PubMed  Google Scholar 

  153. Meijers-Heijboer, H. et al. Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N. Engl. J. Med. 345, 159–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Rebbeck, T. R. et al. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N. Engl. J. Med. 346, 1616–1622 (2002).

    Article  PubMed  Google Scholar 

  155. Hartmann, L. C. et al. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N. Engl. J. Med. 340, 77–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Pennisi, V. R. & Capozzi, A. Subcutaneous mastectomy data: a final statistical analysis of 1500 patients. Aesthetic Plast. Surg. 13, 15–21 (1989).

    Article  CAS  PubMed  Google Scholar 

  157. Stefanek, M., Hartmann, L. & Nelson, W. Risk-reduction mastectomy: clinical issues and research needs. J. Natl Cancer Inst. 93, 1297–1306 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Disis, M. L. et al. Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood 99, 2845–2850 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Whitcomb, D. C. Genetic predispositions to acute and chronic pancreatitis. Med. Clin. North Am. 84, 531–547 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Lowenfels, A. B. et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J. Natl Cancer Inst. 89, 442–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  161. Lowenfels, A. B., Maisonneuve, P., Whitcomb, D. C., Lerch, M. M. & DiMagno, E. P. Cigarette smoking as a risk factor for pancreatic cancer in patients with hereditary pancreatitis. JAMA 286, 169–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Vavasseur, F. et al. O-glycan biosynthesis in human colorectal adenoma cells during progression to cancer. Eur. J. Biochem. 222, 415–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  164. Li, A. et al. Comparative study for histology, proliferative activity, glycoproteins, and p53 protein between old and recent colorectal adenomas in Japan. Cancer Lett. 170, 45–52 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank former and present members of my laboratory, whose work has helped shaped my ideas. I also thank the National Institutes of Health, the American Cancer Society, the Susan G. Komen Foundation, the Nathan Arenson Fund for Pancreatic Cancer Research, and the Bob and Coleen Woeber Fund for Breast Cancer Research for support.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

4-1BB

CTLA4

cyclin B1

GM-CSF

HER2

IL-2

IL-4

IL-10

IL-12

IL-13

MAGE3

mucin 1

TGF-β

Entrez

HBV

HPV16

FURTHER INFORMATION

Vaccine tutorial

Cancer Research Institute

Therapeutic cancer vaccines

National Cancer Institute

Glossary

SHARED TUMOUR ANTIGENS

Molecules that are expressed by many tumours and not normal tissues, or expressed by normal tissue in a quantitatively and qualitatively different form.

UNIQUE TUMOUR ANTIGENS

Products of random mutations or gene rearrangements, often induced by physical or chemical carcinogens, and therefore expressed uniquely by individual tumours.

EPITOPE SPREADING

A term originally applied to responses to autoantigens that tend to become more diverse as the response persists. This phenomenon is also known as determinant spreading or antigen spreading. In the setting of a vaccine, it refers to responses that are generated to antigens other than those contained in the vaccine.

ADJUVANT

An agent mixed with an antigen that enhances the immune response to that antigen after immunization.

T HELPER 1/2 CELLS

TH1/TH2 cells. Two subsets of activated CD4+ T cells that can be distinguished by the cytokines they produce. TH1 cells produce interferon-γ, lymphotoxin and tumour-necrosis factor, and enhance cell-mediated immunity. TH2 cells produce interleukin-4 (IL-4), IL-5 and IL-13, and support humoral immunity.

IDIOTYPE

The unique portion of either a T-cell receptor or an immunoglobulin molecule, defined by the hypervariable regions and involved in antigen recognition.

ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY

(ADCC). Killing of antibody-coated target cells by cells expressing Fc receptors (FcRs) that recognize the constant region of the bound antibody. Most ADCC is mediated by natural killer cells that express the FcR CD16 or FcγRIII on their cell surface.

DELAYED-TYPE HYPERSENSITIVITY

(DTH). A cellular immune response to antigen injected into the skin that develops over 24–72 hours with the infiltration of T cells and monocytes, and depends on the production of T helper 1-specific cytokines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finn, O. Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3, 630–641 (2003). https://doi.org/10.1038/nri1150

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri1150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing