Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deregulated cyclin E promotes p53 loss of heterozygosity and tumorigenesis in the mouse mammary gland

Abstract

Deregulation of cyclin E expression and/or high levels have been reported in a variety of tumors and have been used as indicators of poor prognosis. Although the role that cyclin E plays in tumorigenesis remains unclear, there is evidence that it confers genomic instability when deregulated in cultured cells. Here we show that deregulated expression of a hyperstable allele of cyclin E in mice heterozygous for p53 synergistically increases mammary tumorigenesis more than that in mice carrying either of these markers individually. Most tumors and tumor-derived cell lines demonstrated loss of p53 heterozygosity. Furthermore, this tumor susceptibility is related to the number of times the transgene is induced indicating that it is directly attributable to the expression of the cyclin E transgene. An indirect assay indicates that loss of p53 function is an early event occurring in the mammary epithelia of midlactation mammary glands in which cyclin E is deregulated long before evidence of malignancy. These data support the hypothesis that deregulated expression of cyclin E stimulates p53 loss of heterozygosity by promoting genomic instability and provides specific evidence for this in vivo. Cyclin E deregulation and p53 loss are characteristics often observed in human breast carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barnes DM, Gillett CE . (1998). Breast Cancer Res Treat 52: 1–15.

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). Nature 434: 864–870.

  • Bieche I, Olivi M, Nogues C, Vidaud M, Lidereau R . (2002). Br J Cancer 86: 580–586.

  • Blagosklonny MV, Pardee AB . (2002). Cell Cycle 1: 103–110.

  • Bortner DM, Rosenberg MP . (1997). Mol Cell Biol 17: 453–459.

  • Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V et al. (2003). Am J Pathol 163: 1255–1260.

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML et al. (1992). Nature 359: 328–330.

  • Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM . (1996). Genes Dev 10: 1979–1990.

  • Covini G, Chan EK, Nishioka M, Morshed SA, Reed SI, Tan EM . (1997). Hepatology 25: 75–80.

  • Cui XS, Donehower LA . (2000). Oncogene 19: 5988–5996.

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992). Nature 356: 215–221.

  • Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI . (2004a). J Cell Biol 165: 789–800.

  • Ekholm-Reed S, Spruck CH, Sangfelt O, van Drogen F, Mueller-Holzner E, Widschwendter M et al. (2004b). Cancer Res 64: 795–800.

  • Geisen C, Karsunky H, Yucel R, Moroy T . (2003). Oncogene 22: 1724–1729.

  • Geisen C, Moroy T . (2002). J Biol Chem 277: 39909–39918.

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Nature 434: 907–913.

  • Hamilton AS, Mack TM . (2003). N Engl J Med 348: 2313–2322.

  • Hosokawa Y, Papanikolaou A, Cardiff RD, Yoshimoto K, Bernstein M, Wang TC et al. (2001). Transgenic Res 10: 471–478.

  • Hubalek MM, Widschwendter A, Erdel M, Gschwendtner A, Fiegl HM, Muller HM et al. (2004). Oncogene 23: 4187–4192.

  • Innocente SA, Abrahamson JL, Cogswell JP, Lee JM . (1999). Proc Natl Acad Sci USA 96: 2147–2152.

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA . (1992). Nature 359: 295–300.

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Curr Biol 4: 1–7.

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . (2001). Nat Genet 29: 418–425.

  • Karsunky H, Geisen C, Schmidt T, Haas K, Zevnik B, Gau E et al. (1999). Oncogene 18: 7816–7824.

  • Kawamura K, Izumi H, Ma Z, Ikeda R, Moriyama M, Tanaka T et al. (2004). Cancer Res 64: 4800–4809.

  • Krause K, Wasner M, Reinhard W, Haugwitz U, Dohna CL, Mossner J et al. (2000). Nucl Acids Res 28: 4410–4418.

  • Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C . (2002). Nat Genet 32: 355–357.

  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K et al. (1992). Nature 359: 288–294.

  • Lindahl T, Landberg G, Ahlgren J, Nordgren H, Norberg T, Klaar S et al. (2004). Carcinogenesis 25: 375–380.

  • Loeb KR, Kostner H, Firpo E, Norwood T, Tsuchiya K, Clurman BE et al. (2005). Cancer Cell 8: 35–47.

  • Lukas J, Herzinger T, Hansen K, Moroni MC, Resnitzky D, Helin K et al. (1997). Genes Dev 11: 1479–1492.

  • Malumbres M, Barbacid M. . (2001). Nat Rev Cancer 1: 222–231.

  • Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK . (2001). Nature 413: 311–316.

  • Moon RC . (1969). Int J Cancer 4: 312–317.

  • Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA et al. (2000). Oncogene 19: 1635–1646.

  • Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M . (1995). Mol Cell Biol 15: 2612–2624.

  • Park M, Chae HD, Yun J, Jung M, Kim YS, Kim SH et al. (2000). Cancer Res 60: 542–545.

  • Qiu J, Gunaratne P, Peterson LE, Khurana D, Walsham N, Loulseged H et al. (2003). Leukemia 17: 1891–1900.

  • Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B et al. (2004). Nature 428: 77–81.

  • Resnitzky D, Gossen M, Bujard H, Reed SI . (1994). Mol Cell Biol 14: 1669–1679.

  • Seghezzi W, Chua K, Shanahan F, Gozani O, Reed R, Lees E . (1998). Mol Cell Biol 18: 4526–4536.

  • Simin K, Wu H, Lu L, Pinkel D, Albertson D, Cardiff RD et al. (2004). PLoS Biol 2: 194–205.

  • Spruck C, Strohmaier H, Watson M, Smith AP, Ryan A, Krek TW et al. (2001). Mol Cell 7: 639–650.

  • Spruck CH, Strohmaier H, Sangfelt O, Muller HM, Hubalek M, Muller-Holzner E et al. (2002). Cancer Res 62: 4535–4539.

  • Spruck CH, Won KA, Reed SI . (1999). Nature 401: 297–300.

  • Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI . (2001). Nature 413: 316–322.

  • Swanson SM, Guzman RC, Collins G, Tafoya P, Thordarson G, Talamantes F et al. (1995). Cancer Lett 90: 171–181.

  • Thordarson G, Jin E, Guzman RC, Swanson SM, Nandi S, Talamantes F . (1995). Carcinogenesis 16: 2847–2853.

  • Venkatachalam S, Shi YP, Jones SN, Vogel H, Bradley A, Pinkel D et al. (1998). EMBO J 17: 4657–4667.

  • Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . (1994). Nature 369: 669–671.

  • Wei Y, Jin J, Harper JW . (2003). Mol Cell Biol 23: 3669–3680.

  • Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M et al. (2003). Mol Cell 12: 381–392.

  • Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA . (2002). Dev Biol 245: 42–56.

  • Won KA, Reed SI . (1996). EMBO J 15: 4182–4193.

  • Yin XY, Grove L, Datta NS, Katula K, Long MW, Prochownik EV . (2001). Cancer Res 61: 6487–6493.

  • Yu M, Zhan Q, Finn OJ . (2002). Mol Immunol 38: 981–987.

Download references

Acknowledgements

We thank Margie Chadwell and Anita San Soucie for assistance in histological preparation, Leslie Pfiefer and Cheryl Moffat for help in animal husbandry, Frank van Drogen and Vasco Liberal for review of the manuscript and Charles Spruck and Steve Haase for helpful discussions. APLS was supported by US Army Congressionally Directed Breast Cancer Fellowship DAMD17-00-1-0427. This work was funded by NIH grant RO1-CA78343 to SIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S I Reed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A., Henze, M., Lee, J. et al. Deregulated cyclin E promotes p53 loss of heterozygosity and tumorigenesis in the mouse mammary gland. Oncogene 25, 7245–7259 (2006). https://doi.org/10.1038/sj.onc.1209713

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1209713

Keywords

This article is cited by

Search

Quick links