Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emergence and pandemic potential of swine-origin H1N1 influenza virus

Abstract

Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. A prime example is the recent emergence of swine-origin H1N1 viruses that have transmitted to and spread among humans, resulting in outbreaks internationally. Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide us with invaluable information to direct infectious disease control programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of influenza A viruses.
Figure 2: Schematic diagram of the influenza viral life cycle.
Figure 3: Emergence of pandemic influenza viruses.
Figure 4: Genesis of swine-origin H1N1 influenza viruses.
Figure 5: Electron microscopic picture of recently emerged swine-origin H1N1 viruses.

Similar content being viewed by others

References

  1. Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323 (2007)

    ADS  CAS  PubMed  Google Scholar 

  2. Morens, D. M., Taubenberger, J. K. & Fauci, A. S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 198, 962–970 (2008)

    PubMed  PubMed Central  Google Scholar 

  3. Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E. & Fanning, T. G. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275, 1793–1796 (1997)This is an important paper that describes the deciphering of the genomic sequence of the 1918 pandemic influenza virus.

    CAS  PubMed  Google Scholar 

  4. Reid, A. H., Fanning, T. G., Hultin, J. V. & Taubenberger, J. K. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl Acad. Sci. USA 96, 1651–1656 (1999)

    ADS  CAS  PubMed  Google Scholar 

  5. Neumann, G. et al. Generation of influenza A viruses entirely from cloned cDNA. Proc. Natl Acad. Sci. USA 96, 9345–9350 (1999)This paper describes the artificial generation of influenza viruses, a breakthrough technology that allows the molecular characterization of influenza viruses and the generation of influenza virus vaccines.

    ADS  CAS  PubMed  Google Scholar 

  6. Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005)This is a pivotal paper that describes the re-creation of the 1918 pandemic influenza virus.

    ADS  CAS  PubMed  Google Scholar 

  7. Kash, J. C. et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Jong, M. D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Med. 12, 1203–1207 (2006)This important paper describes high levels of cytokines in humans infected with highly pathogenic avian H5N1 viruses.

    CAS  PubMed  Google Scholar 

  9. Kobasa, D. et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431, 703–707 (2004)

    ADS  CAS  PubMed  Google Scholar 

  10. Tumpey, T. M. et al. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc. Natl Acad. Sci. USA 99, 13849–13854 (2002)

    ADS  CAS  PubMed  Google Scholar 

  11. Tumpey, T. M. et al. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl Acad. Sci. USA 101, 3166–3171 (2004)

    ADS  CAS  PubMed  Google Scholar 

  12. Watanabe, T. et al. Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proc. Natl Acad. Sci. USA 106, 588–592 (2009)

    ADS  CAS  PubMed  Google Scholar 

  13. Van Hoeven, N. et al. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc. Natl Acad. Sci. USA 106, 3366–3371 (2009)

    ADS  CAS  PubMed  Google Scholar 

  14. Geiss, G. K. et al. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc. Natl Acad. Sci. USA 99, 10736–10741 (2002)

    ADS  CAS  PubMed  Google Scholar 

  15. McAuley, J. L. et al. Expression of the 1918 influenza A virus PB1–F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2, 240–249 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakajima, K., Desselberger, U. & Palese, P. Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274, 334–339 (1978).This paper established that the Russian influenza in 1977 was genetically closely related to viruses circulating in humans in the 1950s.

    ADS  CAS  PubMed  Google Scholar 

  17. Subbarao, K. et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396 (1998)

    ADS  CAS  PubMed  Google Scholar 

  18. Claas, E. C. et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477 (1998)

    CAS  PubMed  Google Scholar 

  19. Smith, G. J. et al. Emergence and predominance of an H5N1 influenza variant in China. Proc. Natl Acad. Sci. USA 103, 16936–16941 (2006)

    ADS  CAS  PubMed  Google Scholar 

  20. Chen, H. et al. Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic control. Proc. Natl. Acad. Sci. USA 103, 2845–2850 (2006)

    ADS  CAS  PubMed  Google Scholar 

  21. Guan, Y. et al. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc. Natl Acad. Sci. USA 99, 8950–8955 (2002)

    ADS  CAS  PubMed  Google Scholar 

  22. Li, K. S. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213 (2004)This paper describes the frequent reassortment events of highly pathogenic avian H5N1 viruses that led to the emergence of the dominant ‘genotype Z’.

    ADS  CAS  PubMed  Google Scholar 

  23. Ducatez, M. F. et al. Avian flu: multiple introductions of H5N1 in Nigeria. Nature 442, 37 (2006)

    ADS  CAS  PubMed  Google Scholar 

  24. Tran, T. H. et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N. Engl. J. Med. 350, 1179–1188 (2004)

    PubMed  Google Scholar 

  25. The Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5 Avian influenza A (H5N1) infection in humans. N. Engl. J. Med. 353, 1374–1385 (2005)

    Google Scholar 

  26. Chotpitayasunondh, T. et al. Human disease from influenza A (H5N1), Thailand, 2004. Emerg. Infect. Dis. 11, 201–209 (2005)

    PubMed  PubMed Central  Google Scholar 

  27. Peiris, J. S. et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363, 617–619 (2004).This paper describes the re-emergence of human infections with highly pathogenic avian H5N1 viruses in 2003, and also emphasises the high concentrations of cytokines found in infected individuals.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. To, K. F. et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J. Med. Virol. 63, 242–246 (2001)

    CAS  PubMed  Google Scholar 

  29. Chan, M. C. et al. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir. Res. 6, 135 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheung, C. Y. et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 360, 1831–1837 (2002)

    CAS  PubMed  Google Scholar 

  31. Fraser, C. et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science 10.1126/science.1176062 (in the press)

  32. Novel Swine-Origin Influenza A (H1N1) Investigation Team Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J Med. 10.1056/NEJMoa0903810 (in the press)This highly important paper presents the first summary of epidemiological and virological data on the new swine-origin H1N1 viruses.

  33. Rogers, G. N. & Paulson, J. C. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 361–373 (1983)This paper establishes differences between human and avian influenza viruses in receptor-binding specificity.

    CAS  PubMed  Google Scholar 

  34. Ito, T. et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 72, 7367–7373 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Matrosovich, M., Zhou, N., Kawaoka, Y. & Webster, R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol. 73, 1146–1155 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shinya, K. et al. Avian flu: influenza virus receptors in the human airway. Nature 440, 435–436 (2006)

    ADS  CAS  PubMed  Google Scholar 

  37. van Riel, D. et al. H5N1 virus attachment to lower respiratory tract. Science 312, 399 (2006)

    CAS  PubMed  Google Scholar 

  38. Nicholls, J. M. et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nature Med. 13, 147–149 (2007)

    CAS  PubMed  Google Scholar 

  39. Stevens, J. et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866–1870 (2004)

    ADS  CAS  PubMed  Google Scholar 

  40. Tumpey, T. M. et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655–659 (2007)

    ADS  CAS  PubMed  Google Scholar 

  41. Gambaryan, A. et al. Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology 344, 432–438 (2006)

    CAS  PubMed  Google Scholar 

  42. Yamada, S. et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444, 378–382 (2006)

    ADS  CAS  PubMed  Google Scholar 

  43. Auewarakul, P. et al. An avian influenza H5N1 virus that binds to a human-type receptor. J. Virol. 81, 9950–9955 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stevens, J. et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404–410 (2006)

    ADS  CAS  PubMed  Google Scholar 

  45. Kawaoka, Y. & Webster, R. G. Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc. Natl Acad. Sci. USA 85, 324–328 (1988)

    ADS  CAS  PubMed  Google Scholar 

  46. Subbarao, E. K., London, W. & Murphy, B. R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 67, 1761–1764 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842 (2001)

    ADS  CAS  PubMed  Google Scholar 

  48. Mehle, A. & Doudna, J. A. An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe 4, 111–122 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rameix-Welti, M. A., Tomoiu, A., Dos Santos Afonso, E., van der Werf, S. & Naffakh, N. Avian influenza A virus polymerase association with nucleoprotein, but not polymerase assembly, is impaired in human cells during the course of infection. J. Virol. 83, 1320–1331 (2009)

    CAS  PubMed  Google Scholar 

  50. Hatta, M. et al. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog. 3, e133 (2007)

    PubMed Central  Google Scholar 

  51. Massin, P., van der Werf, S. & Naffakh, N. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J. Virol. 75, 5398–5404 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Steel, J., Lowen, A. C., Mubareka, S. & Palese, P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog. 5, e1000252 (2009)

    PubMed  PubMed Central  Google Scholar 

  53. Li, Z. et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J. Virol. 79, 12058–12064 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gabriel, G. et al. Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J. Virol. 81, 9601–9604 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gabriel, G., Herwig, A. & Klenk, H. D. Interaction of polymerase subunit PB2 and NP with importin α1 is a determinant of host range of influenza A virus. PLoS Pathog. 4, e11 (2008)

    PubMed  PubMed Central  Google Scholar 

  56. Salomon, R. et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J. Exp. Med. 203, 689–697 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tarendeau, F. et al. Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. PLoS Pathog. 4, e1000136 (2008)

    PubMed  PubMed Central  Google Scholar 

  58. Kuzuhara, T. et al. Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J. Biol. Chem. 284, 6855–6860 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Garcia-Sastre, A. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279, 375–384 (2001)

    CAS  PubMed  Google Scholar 

  60. Garcia-Sastre, A. et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330 (1998)This paper establishes the NS1 protein as an interferon antagonist.

    CAS  PubMed  Google Scholar 

  61. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006)

    ADS  CAS  PubMed  Google Scholar 

  62. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004)

    ADS  CAS  PubMed  Google Scholar 

  63. Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 101, 5598–5603 (2004)

    ADS  CAS  PubMed  Google Scholar 

  64. Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Seo, S., Hoffmann, E. & Webster, R. G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nature Med. 8, 950–954 (2002)

    CAS  PubMed  Google Scholar 

  66. Guan, Y. et al. H5N1 influenza: a protean pandemic threat. Proc. Natl Acad. Sci. USA 101, 8156–8161 (2004)

    ADS  CAS  PubMed  Google Scholar 

  67. Jiao, P. et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J. Virol. 82, 1146–1154 (2008)

    CAS  PubMed  Google Scholar 

  68. Li, Z. et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J. Virol. 80, 11115–11123 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Obenauer, J. C. et al. Large-scale sequence analysis of avian influenza isolates. Science 311, 1576–1580 (2006)

    ADS  CAS  PubMed  Google Scholar 

  70. Jackson, D., Hossain, M. J., Hickman, D., Perez, D. R. & Lamb, R. A. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc. Natl Acad. Sci. USA 105, 4381–4386 (2008)

    ADS  CAS  PubMed  Google Scholar 

  71. Chen, W. et al. A novel influenza A virus mitochondrial protein that induces cell death. Nature Med. 7, 1306–1312 (2001)

    CAS  PubMed  Google Scholar 

  72. Zamarin, D., Garcia-Sastre, A., Xiao, X., Wang, R. & Palese, P. Influenza virus PB1–F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog. 1, e4 (2005)

    PubMed  PubMed Central  Google Scholar 

  73. Mazur, I. et al. The proapoptotic influenza A virus protein PB1–F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell. Microbiol. 10, 1140–1152 (2008)

    CAS  PubMed  Google Scholar 

  74. Conenello, G. M., Zamarin, D., Perrone, L. A., Tumpey, T. & Palese, P. A single mutation in the PB1–F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 3, e141 (2007)

    PubMed Central  Google Scholar 

  75. Kiso, M. et al. Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364, 759–765 (2004)

    CAS  PubMed  Google Scholar 

  76. Poland, G. A., Jacobson, R. M. & Ovsyannikova, I. G. Influenza virus resistance to antiviral agents: a plea for rational use. Clin. Infect. Dis. 48, 1254–1256 (2009)

    PubMed  PubMed Central  Google Scholar 

  77. Le, Q. M. et al. Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108 (2005)

    ADS  CAS  PubMed  Google Scholar 

  78. de Jong, M. D. et al. Oseltamivir resistance during treatment of influenza A (H5N1) infection. N. Engl. J. Med. 353, 2667–2672 (2005)

    ADS  CAS  PubMed  Google Scholar 

  79. Weinstock, D. M., Gubareva, L. V. & Zuccotti, G. Prolonged shedding of multidrug-resistant influenza A virus in an immunocompromised patient. N. Engl. J. Med. 348, 867–868 (2003)

    PubMed  Google Scholar 

  80. Baz, M., Abed, Y., McDonald, J. & Boivin, G. Characterization of multidrug-resistant influenza A/H3N2 viruses shed during 1 year by an immunocompromised child. Clin. Infect. Dis. 43, 1555–1561 (2006)

    CAS  PubMed  Google Scholar 

  81. Ison, M. G., Gubareva, L. V., Atmar, R. L., Treanor, J. & Hayden, F. G. Recovery of drug-resistant influenza virus from immunocompromised patients: a case series. J. Infect. Dis. 193, 760–764 (2006)

    CAS  PubMed  Google Scholar 

  82. Collins, P. J. et al. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453, 1258–1261 (2008)

    ADS  CAS  PubMed  Google Scholar 

  83. Gubareva, L. V., Matrosovich, M. N., Brenner, M. K., Bethell, R. C. & Webster, R. G. Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus. J. Infect. Dis. 178, 1257–1262 (1998)

    CAS  PubMed  Google Scholar 

  84. Babu, Y. S. et al. BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 43, 3482–3486 (2000)

    CAS  PubMed  Google Scholar 

  85. Yamashita, M. et al. CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity. Antimicrob. Agents Chemother. 53, 186–192 (2009)

    CAS  PubMed  Google Scholar 

  86. Furuta, Y. et al. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother. 46, 977–981 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Struct. Mol. Biol. 16, 265–273 (2009)

    MathSciNet  CAS  Google Scholar 

  88. Belshe, R. B. et al. Live attenuated versus inactivated influenza vaccine in infants and young children. N. Engl. J. Med. 356, 685–696 (2007)

    CAS  PubMed  Google Scholar 

  89. Treanor, J. J., Campbell, J. D., Zangwill, K. M., Rowe, T. & Wolff, M. Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N. Engl. J. Med. 354, 1343–1351 (2006)

    CAS  PubMed  Google Scholar 

  90. Bresson, J. L. et al. Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet 367, 1657–1664 (2006)

    CAS  PubMed  Google Scholar 

  91. Lin, J. et al. Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1) vaccine: a phase I randomised controlled trial. Lancet 368, 991–997 (2006)

    CAS  PubMed  Google Scholar 

  92. Bernstein, D. I. et al. Effects of adjuvants on the safety and immunogenicity of an avian influenza H5N1 vaccine in adults. J. Infect. Dis. 197, 667–675 (2008)

    CAS  PubMed  Google Scholar 

  93. Stephenson, I. et al. Antigenically distinct MF59-adjuvanted vaccine to boost immunity to H5N1. N. Engl. J. Med. 359, 1631–1633 (2008)

    CAS  PubMed  Google Scholar 

  94. Levie, K. et al. An adjuvanted, low-dose, pandemic influenza A (H5N1) vaccine candidate is safe, immunogenic, and induces cross-reactive immune responses in healthy adults. J. Infect. Dis. 198, 642–649 (2008)

    PubMed  Google Scholar 

  95. Suguitan, A. L. et al. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med. 3, e360 (2006)

    PubMed  PubMed Central  Google Scholar 

  96. Fan, S. et al. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates. PLoS Pathog. 5, e1000409 (2009)

    PubMed  PubMed Central  Google Scholar 

  97. Schotsaert, M., De, F. M., Fiers, W. & Saelens, X. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev. Vaccines 8, 499–508 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mahmood, K. et al. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. Vaccine 26, 5393–5399 (2008)

    CAS  PubMed  Google Scholar 

  99. Gao, W. et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J. Virol. 80, 1959–1964 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoelscher, M. A. et al. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 367, 475–481 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose critical contributions to influenza virus research could not be cited owing to the number of references permitted. We thank K. Wells for editing the manuscript. We also thank M. Ozawa and others in our laboratories who contributed to the data cited in this review. Our original research was supported by National Institute of Allergy and Infectious Diseases Public Health Service research grants; by the Center for Research on Influenza Pathogenesis (CRIP) funded by the National Institute of Allergy and Infectious Diseases (Contract HHSN266200700010C), Grant-in-Aid for Specially Promoted Research, by a contract research fund for the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology, by grants-in-aid from the Ministry of Health and by ERATO (Japan Science and Technology Agency). G.N. is named as co-inventor on several patents about influenza virus reverse genetics and/or the development of influenza virus vaccines or antivirals. Y.K. is named as inventor/co-inventor on several patents about influenza virus reverse genetics and/or the development of influenza virus vaccines or antivirals. Figures 1 and 2 were modified from Orthomyxoviruses: influenza, in Topley and Wilson's Microbiology and Microbial Infections: Virology (Hodder Arnold, 2005); Fig. 3 was modified from Orthomyxoviruses, in Fields Virology (Lippincott Williams & Wilkins, 2007).

Author Contributions G.N. wrote the manuscript. T.N. provided the electron microscopic picture. Y.K. also wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kawaoka.

Ethics declarations

Competing interests

[Competing Interests: Y.K. has received speaker’s honoraria from Chugai Pharmaceuticals, Novartis, Sankyo, Toyama Chemical, Wyeth and GlaxoSmithKline; grant support from Chugai Pharmaceuticals, Daiichi Sankyo Pharmaceutical and Toyama Chemical; consulting fee from Theraclone Sciences and Fort Dodge Animal Health; and is a founder of FluGen. G.N. has received consulting fee from Theraclone Sciences and is a founder of FluGen.]

Additional information

The authors declare competing financial interests: details accompany the full-text HTML version of the paper at www.nature.com/nature.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, G., Noda, T. & Kawaoka, Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459, 931–939 (2009). https://doi.org/10.1038/nature08157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature08157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing