Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Topological sound in active-liquid metamaterials

Abstract

Liquids composed of self-propelled particles have been experimentally realized using molecular, colloidal or macroscopic constituents1,2,3,4,5. These active liquids can flow spontaneously even in the absence of an external drive6,7,8. Unlike spontaneous active flow9,10, the propagation of density waves in confined active liquids is not well explored. Here, we exploit a mapping between density waves on top of a chiral flow and electrons in a synthetic gauge field11,12 to lay out design principles for artificial structures termed topological active metamaterials. We design metamaterials that break time-reversal symmetry using lattices composed of annular channels filled with a spontaneously flowing active liquid. Such active metamaterials support topologically protected sound modes that propagate unidirectionally, without backscattering, along either sample edges or domain walls and despite overdamped particle dynamics. Our work illustrates how parity-symmetry breaking in metamaterial structure combined with microscopic irreversibility of active matter leads to novel functionalities that cannot be achieved using only passive materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steady states of polar active liquids in coupled annular channels.
Figure 2: Dispersion of density waves in active metamaterials either with or without topological edge states.
Figure 3: Topologically protected waveguides composed of an active metamaterial.

Similar content being viewed by others

References

  1. Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A. R. Polar patterns of driven filaments. Nature 467, 73–77 (2010).

    Article  ADS  Google Scholar 

  2. Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    Article  ADS  Google Scholar 

  3. Yan, J. et al. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016).

    Article  ADS  Google Scholar 

  4. Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).

    Article  ADS  Google Scholar 

  5. Kumar, N., Soni, H., Ramaswamy, S. & Sood, A. K. Flocking at a distance in active granular matter. Nat. Commun. 5, 4688 (2014).

    Article  ADS  Google Scholar 

  6. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  ADS  Google Scholar 

  7. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

    Article  ADS  Google Scholar 

  8. Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  9. Wioland, H., Woodhouse, F. G., Dunkel, J. & Goldstein, R. E. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices. Nat. Phys. 12, 341–345 (2016).

    Article  Google Scholar 

  10. Bricard, A. et al. Emergent vortices in populations of colloidal rollers. Nat. Commun. 6, 7470 (2015).

    Article  ADS  Google Scholar 

  11. Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article  ADS  Google Scholar 

  12. Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alu, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).

    Article  ADS  Google Scholar 

  13. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  14. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2013).

    Article  Google Scholar 

  15. Chen, B. G., Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons in a topological mechanical insulator. Proc. Natl Acad. Sci. USA 111, 13004–13009 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  16. Paulose, J., Chen, B. G. & Vitelli, V. Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys. 11, 153–156 (2015).

    Article  Google Scholar 

  17. Prodan, E. & Prodan, C. Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 103, 248101 (2009).

    Article  ADS  Google Scholar 

  18. Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).

    Article  ADS  Google Scholar 

  19. Susstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Article  ADS  Google Scholar 

  20. Kariyado, T. & Hatsugai, Y. Manipulation of Dirac cones in mechanical graphene. Sci. Rep. 5, 18107 (2015).

    Article  ADS  Google Scholar 

  21. Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way elastic edge waves. Phys. Rev. Lett. 115, 104302 (2015).

    Article  ADS  Google Scholar 

  22. He, C. et al. Acoustic topological insulator and robust one-way sound transport. Nat. Phys. 12, 1124–1129 (2016).

    Article  Google Scholar 

  23. Toner, J. & Tu, Y. Long-range order in a two-dimensional dynamical xy-model: how birds fly together. Phys. Rev. Lett. 75, 4326–4329 (1995).

    Article  ADS  Google Scholar 

  24. Bertin, E., Droz, M. & Gregoire, G. Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E 74, 022101 (2006).

    Article  ADS  Google Scholar 

  25. Farrell, F., Marchetti, M., Marenduzzo, D. & Tailleur, J. Pattern formation in self-propelled particles with density-dependent motility. Phys. Rev. Lett. 108, 248101 (2012).

    Article  ADS  Google Scholar 

  26. Solon, A. P. & Tailleur, J. Revisiting the flocking transition using active spins. Phys. Rev. Lett. 111, 078101 (2013).

    Article  ADS  Google Scholar 

  27. Suzuki, R., Weber, C. A., Frey, E. & Bausch, A. R. Polar pattern formation in driven filament systems requires non-binary particle collisions. Nat. Phys. 11, 839–843 (2015).

    Article  Google Scholar 

  28. Stenhammar, J., Wittkowski, R., Marenduzzo, D. & Cates, M. E. Light-induced self-assembly of active rectification devices. Sci. Adv. 2, e1501850 (2016).

    Article  ADS  Google Scholar 

  29. Woodhouse, F. G., Forrow, A., Fawcett, J. B. & Dunkel, J. Stochastic cycle selection in active flow networks. Proc. Natl Acad. Sci. USA 113, 8200–8205 (2016).

    Article  ADS  Google Scholar 

  30. Woodhouse, F. G. & Dunkel, J. Active matter logic for autonomous microfluidics. Nat. Commun. 8, 15169 (2017).

    Article  ADS  Google Scholar 

  31. Wioland, H., Lushi, E. & Goldstein, R. E. Directed collective motion of bacteria under channel confinement. New J. Phys. 18, 075002 (2016).

    Article  ADS  Google Scholar 

  32. Wu, K.-T. et al. Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 355, eaal1979 (2017).

    Article  MathSciNet  Google Scholar 

  33. Pearce, D. J. G. & Turner, M. S. Emergent behavioural phenotypes of swarming models revealed by mimicking a frustrated anti-ferromagnet. J. R. Soc. Interface 12, 20150520 (2015).

    Article  Google Scholar 

  34. Brotto, T., Caussin, J.-B., Lauga, E. & Bartolo, D. Hydrodynamics of confined active fluids. Phys. Rev. Lett. 110, 038101 (2013).

    Article  ADS  Google Scholar 

  35. Landau, L. D. & Lifshitz, E. M. Vol. III: Quantum Mechanics, Non-Relativistic Theory (Elsevier Science, 1958).

    Google Scholar 

  36. Fukui, T., Hatsugai, Y. & Suzuki, H. Chern numbers in discretized Brillouin zone: efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn. 74, 1674–1677 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. E. Cates, M. C. Marchetti, R. E. Goldstein, J. Paulose, R. Fleury, V. Cheianov, A. Abanov, Z. Yang and B. Zhang for useful discussions. A.S., B.C.v.Z. and V.V. were funded by FOM, NWO (Vidi grant), and the Delta Institute for Theoretical Physics. D.B. acknowledges support from ANR grant MiTra.

Author information

Authors and Affiliations

Authors

Contributions

A.S., D.B. and V.V. designed the project and performed the analytical calculations. A.S. and B.C.v.Z. carried out the numerical simulations. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Vincenzo Vitelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 455 kb)

Supplementary movie

Supplementary movie 1 (MP4 19553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souslov, A., van Zuiden, B., Bartolo, D. et al. Topological sound in active-liquid metamaterials. Nature Phys 13, 1091–1094 (2017). https://doi.org/10.1038/nphys4193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys4193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing