Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The Phyre2 web portal for protein modeling, prediction and analysis

Abstract

Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal mode Phyre2 pipeline showing algorithmic stages.
Figure 2: Intensive mode Phyre2 pipeline.
Figure 3: Phyre Investigator user interface.
Figure 4: Example Phyre2 summary results page.
Figure 5: Examples of the three main sections of a typical Phyre2 results page.
Figure 6: Example alignment between user query sequence and known structure, as described in Steps 25–28.

Similar content being viewed by others

References

  1. Mukherjee, S., Szilagyi, A., Roy, A. & Zhang, Y . Genome-wide protein structure prediction. in Multiscale Approaches to Protein Modeling (ed. Kolinski, A.) Ch. 11, 255–279 (Springer, 2010).

  2. Koonin, E.V., Wolf, Y.I. & Karev, G.P. The structure of the protein universe and genome evolution. Nature 420, 218–223 (2002).

    Article  CAS  Google Scholar 

  3. Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

  4. Mao, C. et al. Functional assignment of Mycobacterium tuberculosis proteome by genome-scale fold-recognition. Tuberculosis 1, 93 (2013).

    Google Scholar 

  5. Lewis, T.E. et al. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains. Nucl. Acids Res. 41, D499–D507 (2013).

    Article  CAS  Google Scholar 

  6. Fucile, G. et al. ePlant and the 3D data display initiative: integrative systems biology on the world wide web. PLoS ONE 6, e15237 (2010).

    Article  Google Scholar 

  7. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment of methods of protein structure prediction (CASP)—round X. Proteins 82 S2: 1–6 (2014).

    Article  CAS  Google Scholar 

  8. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    Article  CAS  Google Scholar 

  9. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  Google Scholar 

  10. Söding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005).

    Article  Google Scholar 

  11. Lobley, A., Sadowski, M.I. & Jones, D.T. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics. 25, 1761–1767 (2009).

    Article  CAS  Google Scholar 

  12. Raman, S. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77 (suppl. 9), 89–99 (2009).

    Article  CAS  Google Scholar 

  13. Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012).

    Article  Google Scholar 

  14. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  15. Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9, 173–175 (2012).

    Article  CAS  Google Scholar 

  16. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 292, 195–202 (1999).

    Article  CAS  Google Scholar 

  17. Canutescu, A.A. & Dunbrack, R.L. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12, 963–972 (2003).

    Article  CAS  Google Scholar 

  18. Jefferys, B.R., Kelley, L.A. & Sternberg, M.J. Protein folding requires crowd control in a simulated cell. J. Mol. Biol. 397, 1329–1338 (2010).

    Article  CAS  Google Scholar 

  19. Rotkiewicz, P. & Skolnick, J. Fast procedure for reconstruction of full-atom protein models from reduced representations. J. Comput. Chem. 29, 1460–1465 (2008).

    Article  CAS  Google Scholar 

  20. Wei, X. & Sahinidis, N.V. Residue-rotamer-reduction algorithm for the protein side-chain conformation problem. Bioinformatics 22, 188–194 (2006).

    Article  Google Scholar 

  21. Arjun, R., Lindahl, E. & Wallner, B. Improved model quality assessment using ProQ2. BMC Bioinformatics 13, 224 (2012).

    Article  Google Scholar 

  22. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic acids Res 35 (suppl. 2), W375–W383 (2007).

    Article  Google Scholar 

  23. Schmidtke, P., Le Guilloux, V., Maupetit, J. & Tufféry, P. Fpocket: online tools for protein ensemble pocket detection and tracking. Nucleic acids Res 38 (suppl. 2), W582–W589 (2010).

    Article  CAS  Google Scholar 

  24. Porter, C.T., Bartlett, G.J. & Thornton, J.M. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic acids Res 32 (suppl. 1), D129–D133 (2004).

    Article  CAS  Google Scholar 

  25. Yates, C.M., Filippis, I., Kelley, L.A. & Sternberg, M.J. SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. J. Mol. Biol. 426, 2692–2701 (2014).

    Article  CAS  Google Scholar 

  26. Capra, J.A. & Singh, M. Predicting functionally important residues from sequence conservation. Bioinformatics 23, 1875–1882 (2007).

    Article  CAS  Google Scholar 

  27. Higurashi, M., Ishida, T. & Kinoshita, K. PiSite: a database of protein interaction sites using multiple binding states in the PDB. Nucleic Acids Res. 37 (Database issue): D360–D364 (2009).

    Article  CAS  Google Scholar 

  28. Marchler-Bauer, A. et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41 (D1): D348–D352 (2013).

    Article  CAS  Google Scholar 

  29. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  Google Scholar 

  30. Sim, N. et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic acids Res. 40 W1: W452–W457 (2012).

    Article  CAS  Google Scholar 

  31. González-Pérez, A. & López-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 88, 440–449 (2011).

    Article  Google Scholar 

  32. Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F. & Jones, D.T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645 (2004).

    Article  CAS  Google Scholar 

  33. Siew, N., Elofsson, A., Rychlewski, L. & Fischer, D. MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics. 16, 776–785 (2000).

    Article  CAS  Google Scholar 

  34. Wass, M.N., Kelley, L.A. & Sternberg, M.J. 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 38, W469–W473 (2010).

    Article  CAS  Google Scholar 

  35. Jones, D.T. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 3, 538–544 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK Biotechnology and Biological Sciences Research Council (L.A.K.: BB/J019240/1, M.N.W.: BB/F020481/1), the UK Medical Research Council (MRC) (C.M.Y.: MRC Standard Research Student (DTA) G1000390-1/1) and the UK Engineering and Physical Sciences Research Council (EPSRC) (S.M.: EPSRC Standard Research Student (DTG) EP/K502856/1).

Author information

Authors and Affiliations

Authors

Contributions

L.A.K. designed the Phyre2 system and wrote the paper; M.J.E.S. supervised the project; S.M. developed the multiple template modeling protocol; C.M.Y. developed the SuSPect method and M.N.W. developed the 3DLigandSite web resource.

Corresponding author

Correspondence to Lawrence A Kelley.

Ethics declarations

Competing interests

M.J.E.S. is a director and shareholder in Equinox Pharma Ltd., which uses bioinformatics and chemoinformatics in drug discovery research and services.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelley, L., Mezulis, S., Yates, C. et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845–858 (2015). https://doi.org/10.1038/nprot.2015.053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.053

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing