Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Experimental models of hepatitis B and C — new insights and progress

Key Points

  • Early work on viral hepatitis relied on biochemical methods and microscopy, but the field greatly benefited from the use of primates and other animal models of both acute and chronic infection

  • Use of tumour-derived cells lines has increased our understanding of viral hepatitis; small molecule screens were performed in cell lines expressing viral genomes to identify agents that could suppress viral replication

  • Primary human hepatocytes are considered the most biologically relevant in vitro model for viral hepatitis infections; advances in propagation of stem cells in culture have led to exciting new stem-cell-derived hepatocyte models

  • Hepatocytes and other epithelial cells exist and function in a highly structured system and in vitro models are moving to those that incorporate multiple nonparenchymal cells and 3D lattices to preserve full hepatocyte function

  • Mouse models were initially limited by species-specific barriers, but transgenic animals can used to study immune responses and species-specific barriers can be overcome through the generation of humanized mice

  • Further progress in recapitulating human immune responses in mouse models might facilitate the development of an HCV vaccine, with in vitro models of HBV cccDNA persistence aiding discovery of anti-HBV small molecules

Abstract

Viral hepatitis is a major cause of morbidity and mortality, affecting hundreds of millions of people worldwide. Hepatitis-causing viruses initiate disease by establishing both acute and chronic infections, and several of these viruses are specifically associated with the development of hepatocellular carcinoma. Consequently, intense research efforts have been focusing on increasing our understanding of hepatitis virus biology and on improving antiviral therapy and vaccination strategies. Although valuable information on viral hepatitis emerged from careful epidemiological studies on sporadic outbreaks in humans, experimental models using cell culture, rodent and non-human primates were essential in advancing the field. Through the use of these experimental models, improvement in both the treatment and prevention of viral hepatitis has progressed rapidly; however, agents of viral hepatitis are still among the most common pathogens infecting humans. In this Review, we describe the important part that these experimental models have played in the study of viral hepatitis and led to monumental advances in our understanding and treatment of these pathogens. Ongoing developments in experimental models are also described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HBV biology.
Figure 2: HCV biology.
Figure 3: The evolving models to study the HCV life cycle and pathogenesis.
Figure 4: The evolving models to study the HBV life cycle and pathogenesis.

Similar content being viewed by others

References

  1. Thomas, E., Yoneda, M. & Schiff, E. R. Viral hepatitis: past and future of HBV and HDV. Cold Spring Harb. Perspect. Med. 5, a021345 (2015).

    PubMed  PubMed Central  Google Scholar 

  2. Liang, T. J. Current progress in development of hepatitis C virus vaccines. Nat. Med. 19, 869–878 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, J. et al. Long-term efficacy of a hepatitis E vaccine. N. Engl. J. Med. 372, 914–922 (2015).

    CAS  PubMed  Google Scholar 

  4. Wang, J. L. et al. Histological outcome for chronic hepatitis B patients treated with entecavir versus lamivudine-based therapy. World J. Gastroenterol. 21, 9598–9606 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsai, N. C. et al. Viral suppression and cirrhosis regression with tenofovir disoproxil fumarate in Asians with chronic hepatitis B. Dig. Dis. Sci. 60, 260–268 (2015).

    CAS  PubMed  Google Scholar 

  6. Liang, T. J. & Ghany, M. G. Therapy of hepatitis C — back to the future. N. Engl. J. Med. 370, 2043–2047 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Liang, T. J. & Ghany, M. G. Current future therapies hepatitis C virus infection. N. Engl. J. Med. 368, 1907–1917 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Seeger, C. & Mason, W. S. Molecular biology of hepatitis B virus infection. Virology 1, 24–30 (2015).

    Google Scholar 

  9. Yan, H. et al. NTCP opens the door for hepatitis B virus infection. Antiviral Res. 121, 24–30 (2015).

    CAS  PubMed  Google Scholar 

  10. Cheng, L. et al. Modeling hepatitis B virus infection, immunopathology and therapy in mice. Antiviral Res. 121, 1–8 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mason, W. S. Animal models and the molecular biology of hepadnavirus infection. Cold Spring Harb. Perspect. Med. 5, a021352 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Liang, T. J. et al. Present and future therapies of hepatitis B: from discovery to cure. Hepatology 62, 1893–1908 (2015).

    PubMed  Google Scholar 

  13. Zeisel, M. B. et al. Towards an HBV cure: state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure. Gut 64, 1314–1326 (2015).

    CAS  PubMed  Google Scholar 

  14. Murray, C. L. & Rice, C. M. Turning hepatitis C into a real virus. Annu. Rev. Microbiol. 65, 307–327 (2011).

    CAS  PubMed  Google Scholar 

  15. Lohmann, V. & Bartenschlager, R. On the history of hepatitis C virus cell culture systems. J. Med. Chem. 57, 1627–1642 (2014).

    CAS  PubMed  Google Scholar 

  16. Bukh, J. Animal models for the study of hepatitis C. Virus infection and related liver disease. Gastroenterology 142, 1279–1287.e3 (2012).

    PubMed  Google Scholar 

  17. von Schaewen, M. & Ploss, A. Murine models of hepatitis C: what can we look forward to? Antiviral Res. 104, 15–22 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lagaye, S. et al. Major models of HCV infection. Future Virol. 8, 493–506 (2013).

    CAS  Google Scholar 

  19. Catanese, M. T. & Dorner, M. Advances in experimental systems to study hepatitis C virus in vitro and in vivo. Virology 479, 221–233 (2015).

    PubMed  Google Scholar 

  20. Gerlich, W. H. Medical virology of hepatitis B: how it began and where we are now. Virol. J. 10, 239 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Seeger, C. & Mason, W. S. Molecular biology of hepatitis B virus infection. Virology 479, 672–686 (2015).

    PubMed  Google Scholar 

  22. Smith, B. D. et al. Recommendations for the identification of chronic hepatitis C virus infection among persons born during 1945–1965. MMWR Recomm. Rep. 61, 1–32 (2012).

    PubMed  Google Scholar 

  23. Kanwal, F. et al. Increasing prevalence of HCC and cirrhosis in patients with chronic hepatitis C Virus Infection. Gastroenterology 140, 1182–1188.e1 (2011).

    PubMed  Google Scholar 

  24. Blumberg, B. S., Alter, H. J. & Visnich, S. A 'new' antigen leukemia sera. JAMA 191, 541–546 (1965).

    CAS  PubMed  Google Scholar 

  25. Melnick, J. L. & Boggs, J. D. Human volunteer and tissue culture studies of viral hepatitis. Can. Med. Assoc. J. 106, 461–467 (1972).

    PubMed Central  Google Scholar 

  26. Krugman, S. Giles, J. & Hammond, J. Evidence for two distinctive clinical, epidemiological, and immunological types of infection. JAMA 200, 365–373 (1967).

    CAS  PubMed  Google Scholar 

  27. Feinstone, S. M., Kapikian, A. Z. & Purceli, R. H. Hepatitis A: detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science 182, 1026–1028 (1973).

    CAS  PubMed  Google Scholar 

  28. Feinstone, S. M. et al. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N. Engl. J. Med. 292, 767–770 (1975).

    CAS  PubMed  Google Scholar 

  29. Choo, Q. L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    CAS  PubMed  Google Scholar 

  30. Rizzetto, M. et al. Immunofluorescence detection of new antigen-antibody system (delta/anti-delta) associated to hepatitis B virus in liver and in serum of HBsAg carriers. Gut 18, 997–1003 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, K. S. et al. Structure, sequence and expression of the hepatitis delta (δ) viral genome. Nature 323, 508–514 (1986).

    CAS  PubMed  Google Scholar 

  32. Rizzetto, M. Hepatitis D: clinical features and therapy. Dig. Dis. 28, 139–143 (2010).

    PubMed  Google Scholar 

  33. Khuroo, M. S. Study of an epidemic of non-A, non-B hepatitis. Possibility of another human hepatitis virus distinct from post-transfusion non-A, non-B type. Am. J. Med. 68, 818–824 (1980).

    CAS  PubMed  Google Scholar 

  34. Reyes, G. R. et al. Isolation of a cDNA from the virus responsible for enterically transmitted non-A, non-B hepatitis. Science 247, 1335–1339 (1990).

    CAS  PubMed  Google Scholar 

  35. Woerz, I., Lohmann, V. & Bartenschlager, R. Hepatitis C virus replicons: dinosaurs still business? J. Viral Hepatitis 16, 1–9 (2009).

    Google Scholar 

  36. Bartenschlager, R. Hepatitis C virus replicons: potential role for drug development. Nat. Rev. Drug Discov. 1, 911–916 (2002).

    CAS  PubMed  Google Scholar 

  37. Gao, M. et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465, 96–U108 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sumpter, R. Jr et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol. 79, 2689–2699 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Naik, S. & Russell, S. J. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin. Biol. Ther. 9, 1163–1176 (2009).

    CAS  PubMed  Google Scholar 

  40. Brighton, W. D., Taylor, P. E. & Zuckerma, A. J. Changes induced by hepatitis serum in cultured liver cells. Nat. New Biol. 232, 57–58 (1971).

    CAS  PubMed  Google Scholar 

  41. Bartenschlager, R. & Lohmann, V. Replication of the hepatitis C virus. Best Pract. Res. Clin. Gastroenterol. 14, 241–254 (2000).

    CAS  Google Scholar 

  42. Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574 (1997).

    CAS  PubMed  Google Scholar 

  43. Sells, M. A., Chen, M. L. & Acs, G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc. Natl Acad. Sci. USA 84, 1005–1009 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakabayashi, H. et al. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 42, 3858–3863 (1982).

    CAS  PubMed  Google Scholar 

  45. Bartenschlager, R. & H. Schaller, Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J. 11, 3413–3420 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    CAS  PubMed  Google Scholar 

  47. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    CAS  PubMed  Google Scholar 

  48. Blight, K. J., McKeating, J. A. & Rice, C. M. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Friebe, P. et al. Kissing-loop interaction in the 3′ end of the hepatitis C virus genome essential for RNA replication. J. Virol. 79, 380–392 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Saeed, M. et al. Replication of hepatitis C virus genotype 3a in cultured cells. Gastroenterology 144, 56–U137 (2013).

    CAS  PubMed  Google Scholar 

  51. Saeed, M. et al. Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells. Antimicrob. Agents Chemother. 56, 5365–5373 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Saeed, M. et al. SEC14L2 enables pan-genotype HCV replication in cell culture. Nature 524, 471–475 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bukh, J. et al. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc. Natl Acad. Sci. USA 99, 14416–14421 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kato, T. et al. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125, 1808–1817 (2003).

    CAS  PubMed  Google Scholar 

  55. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    CAS  PubMed  Google Scholar 

  57. Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl Acad. Sci. USA 102, 9294–9299 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yi, M. et al. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc. Natl Acad. Sci. USA 103, 2310–2315 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gottwein, J. M. et al. Novel infectious cDNA clones of hepatitis C virus genotype 3a (strain S52) and 4a (strain ED43): genetic analyses and in vivo pathogenesis studies. J. Virol. 84, 5277–5293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Y. P. et al. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77. J. Virol. 89, 811–823 (2015).

    PubMed  Google Scholar 

  61. Heller, T. et al. An in vitro model of hepatitis C virion production. Proc. Natl Acad. Sci. USA 102, 2579–2583 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kato, T. et al. Production of infectious hepatitis C virus of various genotypes in cell cultures. J. Virol. 81, 4405–4411 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chang, C. M. et al. Production of hepatitis B virus in vitro by transient expression of cloned HBV DNA in a hepatoma cell line. EMBO J. 6, 675–680 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yaginuma, K., Shirataka, Y., Kobayashi, M. & Koike, K. Hepatitis B virus (HBV) particles are produced in a cell culture system by transient expression of transfected HBV DNA. Proc. Natl Acad. Sci. USA 84, 2678–2682 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pollicino, T. et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 130, 823–837 (2006).

    CAS  PubMed  Google Scholar 

  66. Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLIFE 1, e00049 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Sureau, C. et al. Production of hepatitis B virus by a differentiated human hepatoma cell line after transfection with cloned circular HBV DNA. Cell 47, 37–47 (1986).

    CAS  PubMed  Google Scholar 

  68. Jost, S. et al. Induction of antiviral cytidine deaminases does not explain the inhibition of hepatitis B virus replication by interferons. J. Virol. 81, 10588–10596 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Protzer, U. et al. Antiviral activity and hepatoprotection by heme oxygenase-1 in hepatitis B virus infection. Gastroenterology 133, 1156–1165 (2007).

    CAS  PubMed  Google Scholar 

  70. Ladner, S. K. et al. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication. Antimicrob. Agents Chemother. 41, 1715–1720 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lucifora, J. et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 343, 1221–1228 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Delaney, W. E. 4th & Isom, H. C. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology 28, 1134–1146 (1998).

    CAS  PubMed  Google Scholar 

  73. Sprinzl, M. F. et al. Transfer of hepatitis B virus genome by adenovirus vectors into cultured cells and mice: crossing the species barrier. J. Virol. 75, 5108–5118 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sedano, C. D. & Sarnow, P. Interaction of host cell microRNAs with the HCV RNA genome during infection of liver cells. Semin. Liver Dis. 35, 75–80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jopling, C. L. et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 1577–1581 (2005).

    CAS  PubMed  Google Scholar 

  76. Rice, C. M. et al. Is CD81 the key to hepatitis C virus entry? Hepatology 29, 990–992 (1999).

    CAS  PubMed  Google Scholar 

  77. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    CAS  PubMed  Google Scholar 

  78. Israelow, B. et al. HepG2 cells mount effective antiviral interferon-lambda based innate immune response hepatitis C virus infection. Hepatology 60, 1170–1179 (2014).

    CAS  PubMed  Google Scholar 

  79. Narbus, C. M. et al. HepG2 cells expressing microRNA miR-122 support entire hepatitis C virus life cycle. J. Virol. 85, 12087–12092 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Thomas, E. et al. HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. Gastroenterology 142, 978–988 (2012).

    CAS  PubMed  Google Scholar 

  81. Gripon, P. et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl Acad. Sci. USA 99, 15655–15660 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ndongo-Thiam, N. et al. Long-term propagation of serum hepatitis C virus (HCV) with production of enveloped HCV particles in human HepaRG hepatocytes. Hepatology 54, 406–417 (2011).

    CAS  PubMed  Google Scholar 

  83. Guillouzo, A. et al. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168, 66–73 (2007).

    CAS  PubMed  Google Scholar 

  84. Andersson, T. B., Kanebratt, K. P. & Kenna, J. G. The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin. Drug Metab. Toxicol. 8, 909–920 (2012).

    CAS  PubMed  Google Scholar 

  85. Schulze, A., Gripon, P. & Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46, 1759–1768 (2007).

    CAS  PubMed  Google Scholar 

  86. Park, U. S. et al. Hepatitis B virus-X protein upregulates the expression of p21waf1/cip1 and prolongs G1→S transition via a p53-independent pathway in human hepatoma cells. Oncogene 19, 3384–3394 (2000).

    CAS  PubMed  Google Scholar 

  87. Lan, K. H. et al. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 21, 4801–4811 (2002).

    CAS  PubMed  Google Scholar 

  88. Naka, K. et al. Hepatitis C virus NS5B delays cell cycle progression by inducing interferon-β via Toll-like receptor 3 signaling pathway without replicating viral genomes. Virology 346, 348–362 (2006).

    CAS  PubMed  Google Scholar 

  89. Yu, S. Y. et al. Hepatitis B virus polymerase inhibits RIG-I- and Toll-like receptor 3-mediated beta interferon induction in human hepatocytes through interference with interferon regulatory factor 3 activation and dampening of the interaction between TBK1/IKKε and DDX3. J. Virol. 91, 2080–2090 (2010).

    CAS  Google Scholar 

  90. Li, K. et al. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-β production in hepatocytes. J. Biol. Chem. 280, 16739–16747 (2005).

    CAS  PubMed  Google Scholar 

  91. Andrus, L. et al. Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells. Hepatology 54, 1901–1912 (2011).

    CAS  PubMed  Google Scholar 

  92. Hyun, I. Policy: regulate embryos made for research. Nature 509, 27–28 (2014).

    CAS  PubMed  Google Scholar 

  93. Elaut, G. et al. Molecular mechanisms underlying the dedifferentiation process of isolated hepatocytes and their cultures. Curr. Drug Metab. 7, 629–660 (2006).

    CAS  PubMed  Google Scholar 

  94. Podevin, P. et al. Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology 139, 1355–1364 (2010).

    CAS  PubMed  Google Scholar 

  95. Fournier, C. et al. In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus. J. Virol. 79, 2367–2374 (1998).

    CAS  Google Scholar 

  96. O'Connell, J. F. et al. Primary human hepatocyte culture for the study of HCV. Methods Mol. Med. 19, 495–500 (1999).

    CAS  Google Scholar 

  97. Rijntjes, P. J., Moshage, H. J. & Yap, S. H. In vitro infection of primary cultures of cryopreserved adult human hepatocytes with hepatitis-B virus. Virus Res. 10, 95–109 (1988).

    CAS  PubMed  Google Scholar 

  98. Gripon, P. et al. Hepatitis-B virus-infection of adult human hepatocytes cultured in the presence of dimethyl-sulfoxide. J. Virol. 62, 4136–4143 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ochiya, T. et al. An in vitro system for infection with hepatitis-B virus that uses primary human-fetal hepatocytes. Proc. Natl Acad. Sci. USA 86, 1875–1879 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Galle, P. R. et al. In-vitro experimental-infection of primary human hepatocytes with hepatitis-B virus. Gastroenterology 106, 664–673 (1994).

    CAS  PubMed  Google Scholar 

  101. Kock, J. et al. Efficient infection of primary Tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J. Virol. 75, 5084–5089 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nair, S. et al. Differential gene expression analysis of in vitro duck hepatitis B virus infected primary duck hepatocyte cultures. Virol. J. 8, 363 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dandri, M. et al. Woodchuck hepatocytes remain permissive for hepadnavirus infection and mouse liver repopulation after cryopreservation. Hepatology 34, 824–833 (2001).

    CAS  PubMed  Google Scholar 

  104. Ploss, A. et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc. Natl Acad. Sci. USA 107, 3141–3145 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sivaraman, A. et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6, 569–591 (2005).

    CAS  PubMed  Google Scholar 

  106. Lu, Y. H. et al. A novel 3D liver organoid system for elucidation of hepatic glucose metabolism. Biotechnol. Bioeng. 109, 595–604 (2012).

    CAS  PubMed  Google Scholar 

  107. Xia, L. et al. Laminar-flow immediate-overlay hepatocyte sandwich perfusion system for drug hepatotoxicity testing. Biomaterials 30, 5927–5936 (2009).

    CAS  PubMed  Google Scholar 

  108. Levy, G. et al. Long-term culture and expansion of primary human hepatocytes. Nat. Biotechnol. 33, 1264–1271 (2015).

    CAS  PubMed  Google Scholar 

  109. Cai, J. et al. Stem Book (Harvard Stem Cell Institute, 2008).

    Google Scholar 

  110. Gomez-Lechon, M. J. et al. Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr. Drug Metab. 5, 443–462 (2004).

    CAS  PubMed  Google Scholar 

  111. Sheahan, T. et al. Interferon lambda alleles predict innate antiviral immune responses and hepatitis C virus permissiveness. Cell Host Microbe 15, 190–202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu, X. F. et al. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog. 8, e1002617 (2014).

    Google Scholar 

  113. Schwartz, R. E. et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 2544–2548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Roelandt, P. et al. Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. J. Hepatol. 57, 246–251 (2012).

    CAS  PubMed  Google Scholar 

  115. Sourisseau, M. et al. Hepatic cells derived from induced pluripotent stem cells of pigtail macaques support hepatitis C virus infection. Gastroenterology 145, 966–969.e7 (2012).

    Google Scholar 

  116. Shlomai, A. et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc. Natl Acad. Sci. USA 111, 12193–12198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Schwartz, R. E. et al. Engineering the microenvironment of differentiating IPS derived hepatocyte-like cells enables acquisition of an adult phenotype. Gastroenterology 144, S1025–S1025 (2013).

    Google Scholar 

  118. Shan, J. et al. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat. Chem. Biol. 9, 514–577 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Takebe, T. et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481–484 (1985).

    Google Scholar 

  120. Chisari, F. V. et al. A transgenic mouse model of the chronic hepatitis-B surface-antigen carrier state. Science 230, 1157–1160 (1985).

    CAS  PubMed  Google Scholar 

  121. Yang, P. L. et al. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc. Natl Acad. Sci. USA 99, 13825–13830 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zeissig, S. et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat. Med. 18, 1060–1068 (2013).

    Google Scholar 

  123. Kawamura, T. et al. Transgenic expression of hepatitis C virus structural proteins in the mouse. Hepatology 25, 1014–1021 (1997).

    CAS  PubMed  Google Scholar 

  124. Sandmann, L. & Ploss, A. Barriers of hepatitis C virus interspecies transmission. Virology 435, 70–80 (2013).

    CAS  PubMed  Google Scholar 

  125. Mercer, D. F. et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

    CAS  PubMed  Google Scholar 

  126. Tesfaye, A. et al. Chimeric mouse model for the infection of hepatitis B and C viruses. PLoS ONE 8, e77298 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bissig, K. D. et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J. Clin. Invest. 120, 924–930 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Washburn, M. L. et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 140, 1334–1344 (2011).

    CAS  PubMed  Google Scholar 

  129. Bility, M. T. et al. Hepatitis B virus infection and immunopathogenesis in a humanized mouse model: induction of human-specific liver fibrosis and M2-like macrophages. PLoS Pathog. 11, e1004718 (2014).

    Google Scholar 

  130. Giersch, K. et al. Persistent hepatitis D virus mono-infection in humanized mice is efficiently converted by hepatitis B virus to a productive co-infection. J. Hepatol. 60, 538–544 (2014).

    CAS  PubMed  Google Scholar 

  131. Carpentier, A. et al. Engrafted human stem cell-derived hepatocytes establish an infectious HCV murine model. J. Clin. Invest. 124, 4953–4964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cormier, E. G. et al. CD81 is an entry coreceptor for hepatitis C virus. Proc. Natl Acad. Sci. USA 101, 7270–7274 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Dorner, M. et al. A genetically humanized mouse model for hepatitis C virus infection. Nature 474, 208–246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dorner, M. et al. Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501, 237–241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, J. Z. et al. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res. 24, 1050–1066 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. He, W. H. et al. Hepatitis D virus infection of mice expressing human sodium taurocholate co-transporting polypeptide. PLoS Pathog. 11, e1004840 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Deinhardt, F. et al. Studies of liver function tests in chimpanzees after inoculation with human infectious hepatitis virus. Am. J. Hyg. 75, 311–321 (1962).

    CAS  PubMed  Google Scholar 

  139. Hillis, W. D. An outbreak of infectious hepatitis among chimpanzee handlers at a United States air force base. Am. J. Hyg. 73, 316–328 (1962).

    Google Scholar 

  140. Tabor, E. et al. Transmission of non-A, non-B hepatitis from man to chimpanzee. Lancet 1, 463–466 (1978).

    CAS  PubMed  Google Scholar 

  141. Alter, H. J. et al. Transmissible agent in non-A, non-B hepatitis. Lancet 1, 459–463 (1978).

    CAS  PubMed  Google Scholar 

  142. Kahn, J. Raising the bar: the implications of the IOM report on the use of chimpanzees in research. Hastings Cent. Rep. 42, S27–S30 (2012).

    Google Scholar 

  143. Altevogt, B. M. et al. Guiding limited use of chimpanzees in research. Science 335, 41–42 (2012).

    CAS  PubMed  Google Scholar 

  144. Wieland, S. F. The chimpanzee model for hepatitis B virus infection. Cold Spring Harb. Perspect. Med. 5, a021469 (2015).

    PubMed  PubMed Central  Google Scholar 

  145. Bukh, J. A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 39, 1469–1475 (2004).

    CAS  PubMed  Google Scholar 

  146. Thomas, D. L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Prokunina-Olsson, L. et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat. Genet. 45, 164–171 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Choo, Q. L. et al. Vaccination of chimpanzees against infection by the hepatitis C virus. Proc. Natl Acad. Sci. USA 91, 1294–1298 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Bigger, C. B. et al. Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J. Virol. 78, 13779–13792 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010).

    CAS  PubMed  Google Scholar 

  151. Tsukiyama-Kohara, K. & Kohara, M. Tupaia belangeri as an experimental animal model for viral infection. Exp. Anim. 63, 367–374 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Dandri, M., Lutgehetmann, M. & Petersen, J. Experimental models and therapeutic approaches for HBV. Semin. Immunopathol. 35, 7–21 (2013).

    CAS  PubMed  Google Scholar 

  153. Walter, E. et al. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 24, 1–5 (1996).

    CAS  PubMed  Google Scholar 

  154. Summers, J., Smolec, J. M. & Snyder, R. Virus similar to human hepatitis-B virus associated with hepatitis and hepatoma in woodchucks. Proc. Natl Acad. Sci. USA 75, 4533–4537 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mason, W. S. et al. Asymmetric replication of duck hepatitis B virus DNA in liver cells: free minus-strand DNA. Proc. Natl Acad. Sci. USA 79, 3997–4001 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Di, Q. et al. Major differences between WHV and HBV in the regulation of transcription. Virology 229, 25–35 (1997).

    CAS  PubMed  Google Scholar 

  157. Sprengel, R. et al. Comparative sequence analysis of duck and human hepatitis B virus genomes. J. Med. Virol. 15, 323–333 (1985).

    CAS  PubMed  Google Scholar 

  158. Kapoor, A. et al. Characterization of a canine homolog of hepatitis C virus. Proc. Natl Acad. Sci. USA 108, 11608–11613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lyons, S. et al. Viraemic frequencies and seroprevalence of non-primate hepacivirus and equine pegiviruses in horses and other mammalian species. J. Gen. Virol. 95, 1701–1711 (2014).

    CAS  PubMed  Google Scholar 

  160. Stapleton, J. T. et al. The GB viruses: a review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus within the family Flaviviridae. J. Gen. Virol. 92, 233–246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Deinhard, F et al. Studies on transmission of human viral hepatitis to marmoset monkeys. 1. Transmission of disease serial passages and description of liver lesions. J. Exp. Med. 125, 673–688 (1985).

    Google Scholar 

  162. Simons, J. N. et al. Identification of 2 flavivirus-like genomes in the Gb hepatitis agent. Proc. Natl Acad. Sci. USA 92, 3401–3405 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Manickam, C. & Reeves, R. K. Modeling HCV disease in animals: virology, immunology and pathogenesis of HCV and GBV-B infections. Front. Microbiol. 56, 690 (2014).

    Google Scholar 

  164. McPhee, F. et al. Preclinical profile and characterization of the hepatitis C virus NS3 protease inhibitor asunaprevir (BMS-650032). Antimicrob. Agents Chemother. 56, 5387–5396 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Chavez, D., Guerra, B. & Lanford, R. E. Antiviral activity and host gene induction by tamarin and marmoset interferon-α and interferon-γ in the GBV-B primary hepatocyte culture model. Virology 390, 186–196 (2009).

    CAS  PubMed  Google Scholar 

  166. Quan, P. L. et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc. Natl Acad. Sci. USA 110, 8194–8199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Ben Ari, Z., Weitzman, E. & Safran, M. Oncogenic viruses and hepatocellular carcinoma. Clin. Liver Dis. 19, 341–360 (2013).

    Google Scholar 

  168. Kennedy, E. M. et al. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476, 196–205 (2015).

    CAS  PubMed  Google Scholar 

  169. Ramanan, V. et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci. Rep. 5, 10833 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Seeger, C. & Sohn, J. A. Targeting hepatitis B virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids 3, e216 (2015).

    Google Scholar 

Download references

Acknowledgements

E.T. acknowledges funding support from the Miami Center for AIDS Research, Leonard M. Miller School of Medicine, USA (P30AI073961) and a the Miami CTSI KL2 program.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made equal contributions to all aspects of this manuscript.

Corresponding author

Correspondence to T. Jake Liang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, E., Liang, T. Experimental models of hepatitis B and C — new insights and progress. Nat Rev Gastroenterol Hepatol 13, 362–374 (2016). https://doi.org/10.1038/nrgastro.2016.37

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing