Thanks to visit codestin.com
Credit goes to www.nature.com

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The meaning of net zero and how to get it right

This article has been updated

Abstract

The concept of net-zero carbon emissions has emerged from physical climate science. However, it is operationalized through social, political and economic systems. We identify seven attributes of net zero, which are important to make it a successful framework for climate action. The seven attributes highlight the urgency of emission reductions, which need to be front-loaded, and of coverage of all emission sources, including currently difficult ones. The attributes emphasize the need for social and environmental integrity. This means carbon dioxide removals should be used cautiously and the use of carbon offsets should be regulated effectively. Net zero must be aligned with broader sustainable development objectives, which implies an equitable net-zero transition, socio-ecological sustainability and the pursuit of broad economic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Net-zero balance of carbon emissions and removals.
Fig. 2

Similar content being viewed by others

Change history

  • 09 March 2022

    In the version of this article initially published, the width of the outflowing arrow in the bottom-left of Fig. 1c (Lithosphere to Atmosphere) was oversized relative to the balance of the two inflowing arrows, and has been corrected in the HTML and PDF versions of the article.

References

  1. Black, R. et al. Taking Stock: A Global Assessment of Net Zero Targets (ECIU and Oxford Net Zero, 2021).

  2. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  3. Levin, K., Rich, D., Ross, K., Fransen, T. & Elliott, C. Designing and Communicating Net-Zero Targets (World Resources Institute, 2020).

  4. Navigating the Nuances of Net-Zero Targets (New Climate Institute & Data-Driven EnviroLab, 2020).

  5. Recommendations of the Task Force on Climate-Related Financial Disclosures (TCFD, 2017); https://www.fsb-tcfd.org/publications/

  6. Allen, M. et al. The Oxford Principles for Net Zero Aligned Carbon Offsetting (Smith School of Enterprise and the Environment, Univ. of Oxford, 2020).

  7. Archer, D. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. Oceans 110, C09S05 (2005).

    Article  Google Scholar 

  8. Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).

    Article  Google Scholar 

  9. Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  CAS  Google Scholar 

  10. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  11. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  12. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article  CAS  Google Scholar 

  13. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Article  CAS  Google Scholar 

  14. MacDougall, A. H. et al. Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, 2987–3016 (2020).

    Article  Google Scholar 

  15. Smith, M. A., Cain, M. & Allen, M. R. Further improvement of warming-equivalent emissions calculation. NPJ Clim. Atmos. Sci 4, 19 (2021).

    Article  Google Scholar 

  16. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).

  17. Zickfeld, K. & Herrington, T. The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission. Environ. Res. Lett. 10, 31001 (2015).

    Article  Google Scholar 

  18. Robinson, M. & Shine, T. Achieving a climate justice pathway to 1.5 °C. Nat. Clim. Change 8, 564–569 (2018).

    Article  Google Scholar 

  19. Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Three ways to improve net-zero emissions targets. Nature 591, 365–368 (2021).

    Article  CAS  Google Scholar 

  20. Agarwal, A. & Narain, S. Global Warming in an Unequal World (Centre for Science and Environment, 1991).

  21. Agarwal, A., Narain, S. & Sharma, A. in Environmental Justice: Discourses in International Political Economy (eds Byrne, J. et al) 171–199 (Routledge, 2017).

  22. Ringius, L., Torvanger, A. & Underdal, A. Burden sharing and fairness principles in international climate policy. Int. Environ. Agreem. 2, 1–22 (2002).

    Article  Google Scholar 

  23. Robinson, M. Climate Justice: Hope, Resilience, and the Fight for a Sustainable Future (Bloomsbury, 2018).

  24. Dyke, J., Watson, R. & Knorr, W. Climate scientists: concept of net zero is a dangerous trap. The Conversation (22 April 2021); https://theconversation.com/climate-scientists-concept-of-net-zero-is-a-dangerous-trap-157368

  25. Chasing Carbon Unicorns: The Deception of Carbon Markets and ‘Net Zero’ (Friends of the Earth, 2021).

  26. Allen, M. R. & Stocker, T. F. Impact of delay in reducing carbon dioxide emissions. Nat. Clim. Change 4, 23–26 (2014).

    Article  CAS  Google Scholar 

  27. Leach, N. J. et al. Current level and rate of warming determine emissions budgets under ambitious mitigation. Nat. Geosci. 11, 574–579 (2018).

    Article  CAS  Google Scholar 

  28. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  CAS  Google Scholar 

  29. Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

    Article  CAS  Google Scholar 

  30. The Sixth Carbon Budget: Methodology Report (Committee on Climate Change, 2020).

  31. Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Article  Google Scholar 

  32. Wilensky, M. Climate change in the courts: an assessment of non-U.S. climate litigation. Duke Environ. Law Policy Forum 26, 131–179 (2015).

    Google Scholar 

  33. Duan, H. et al. Assessing China’s efforts to pursue the 1.5 °C warming limit. Science 372, 378–385 (2021).

    Article  CAS  Google Scholar 

  34. Aghion, P., Dechezleprêtre, A., Hemous, D., Martin, R. & van Reenen, J. Carbon taxes, path dependency, and directed technical change: evidence from the auto industry. J. Polit. Econ. 124, 1–51 (2016).

    Article  Google Scholar 

  35. Aghion, P., Hepburn, C., Teytelboym, A. & Zenghelis, D. in Handbook on Green Growth (ed. Fouquet, R.) Ch. 4 (Edward Elgar, 2019).

  36. Nordhaus, W. D. The perils of the learning model for modeling endogenous technological change. Energy J. 35, 1–13 (2014).

    Article  Google Scholar 

  37. Söderholm, P. & Sundqvist, T. Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies. Renew. Energy 32, 2559–2578 (2007).

    Article  Google Scholar 

  38. Caldecott, B. Stranded Assets and the Environment: Risk, Resilience and Opportunity (Routledge, 2018).

  39. Pfeiffer, A., Millar, R., Hepburn, C. & Beinhocker, E. The ‘2 °C capital stock’ for electricity generation: committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy. Appl. Energy 179, 1395–1408 (2016).

    Article  Google Scholar 

  40. Creutzig, F. et al. Beyond technology: demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 41, 173–198 (2016).

    Article  Google Scholar 

  41. Hovi, J., Sprinz, D. F. & Underdal, A. Implementing long-term climate policy: time inconsistency, domestic politics, international anarchy. Glob. Environ. Polit. 9, 20–39 (2009).

    Article  Google Scholar 

  42. Averchenkova, A., Fankhauser, S. & Nachmany, M. Trends in Climate Change Legislation (Edward Elgar, 2017).

  43. Averchenkova, A., Fankhauser, S. & Finnegan, J. J. The impact of strategic climate legislation: evidence from expert interviews on the UK Climate Change Act. Clim. Policy 21, 251–263 (2021).

    Article  Google Scholar 

  44. Making Clean Electrification Possible: 30 Years to Electrify the Global Economy (Energy Transition Commission, 2021).

  45. Renewables 2020: Analysis and Forecasts to 2025 (IEA, 2020).

  46. Global EV Outlook 2020 (IEA, 2020).

  47. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  Google Scholar 

  48. Dikau, S. & Volz, U. Central bank mandates, sustainability objectives and the promotion of green finance. Ecol. Econ. 184, 107022 (2021).

    Article  Google Scholar 

  49. Eskander, S., Fankhauser, S. & Setzer, J. Global lessons from climate change legislation and litigation. Environ. Energy Policy Econ. 2, 44–82 (2021).

    Article  Google Scholar 

  50. Willis, R. Too Hot to Handle? The Democratic Challenge of Climate Change (Policy Press, 2020).

  51. Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article  CAS  Google Scholar 

  52. Pianta, S., Rinscheid, A. & Weber, E. U. Carbon capture and storage in the United States: perceptions, preferences, and lessons for policy. Energy Policy 151, 112149 (2021).

    Article  CAS  Google Scholar 

  53. Fuss, S. et al. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 63002 (2018).

    Article  Google Scholar 

  54. Lezaun, J., Healey, P., Krueger, T. & Smith, S. M. Governing carbon dioxide removal in the UK: lessons learned and challenges ahead. Front. Clim. 89, 684063 (2021).

    Article  Google Scholar 

  55. Wara, M. Is the global carbon market working? Nature 445, 595–596 (2007).

    Article  CAS  Google Scholar 

  56. Victor, D. G. & Cullenward, D. Making carbon markets work. Sci. Am. 297, 70–77 (2007).

    Article  Google Scholar 

  57. Haya, B. et al. Managing uncertainty in carbon offsets: insights from California’s standardized approach. Clim. Policy 20, 1112–1126 (2020).

    Article  Google Scholar 

  58. Greenhouse Gas Removal Policy Options (Vivid Economics, 2019); https://www.vivideconomics.com/casestudy/greenhouse-gas-removal-policy-options/

  59. Bednar, J. et al. Operationalizing the net-negative carbon economy. Nature 596, 377–383 (2021).

    Article  CAS  Google Scholar 

  60. Future Demand, Supply and Prices for Voluntary Carbon Credits: Keeping the Balance (Trove Research, 2021); https://trove-research.com/research-and-insight/carbon-credit-demand-supply-and-prices-june-2021/

  61. Carton, W., Asiyanbi, A., Beck, S., Buck, H. J. & Lund, J. F. Negative emissions and the long history of carbon removal. Wiley Interdiscip. Rev. Clim. Change 11, e671 (2020).

    Article  Google Scholar 

  62. Elgin, B. These trees are not what they seem. Bloomberg Green (9 December 2020).

  63. Song, L. Why carbon credits for forest preservation may be worse than nothing. ProPublica (22 May 2019).

  64. Dubash, N. K., Winkler, H. & Rajamani, L. Developing countries need to chart their own course to net zero emissions. The Conversation (4 May 2021); https://theconversation.com/developing-countries-need-to-chart-their-own-course-to-net-zero-emissions-159655

  65. Buchner, B. et al. Global Landscape of Climate Finance 2019 (Climate Policy Initiative, 2019).

  66. Dibley, A., Wetzer, T. & Hepburn, C. National COVID debts: climate change imperils countries’ ability to repay. Nature 592, 184–187 (2021).

    Article  CAS  Google Scholar 

  67. Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 285, 20180792 (2018).

    Article  Google Scholar 

  68. Brondizio, E. S., Settele, J., Diaz, S. & Ngo, H. T. Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  69. IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (WMO, 2019).

  70. Girardin, C. A. J. et al. Nature-based solutions can help cool the planet—if we act now. Nature 593, 191–194 (2021).

    Article  CAS  Google Scholar 

  71. Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).

    Article  Google Scholar 

  72. Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    Article  CAS  Google Scholar 

  73. Veldman, J. W. et al. Comment on ‘The global tree restoration potential’. Science https://doi.org/10.1126/science.aay7976 (2019).

  74. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  Google Scholar 

  75. Guidance for Using the IUCN Global Standard for Nature-Based Solutions (IUCN, 2020).

  76. Stern, N. Why Are We Waiting? The Logic, Urgency, and Promise of Tackling Climate Change (MIT Press, 2015).

  77. Hepburn, C., O’Callaghan, B., Stern, N., Stiglitz, J. & Zenghelis, D. Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change? Oxf. Rev. Econ. Policy 36, S359–S381 (2020).

    Article  Google Scholar 

  78. Coady, D., Parry, I., Sears, L. & Shang, B. How Large are Global Energy Subsidies? (IMF, 2015).

  79. Bhattacharya, A., Oppenheim, J. & Stern, N. Driving sustainable development through better infrastructure: key elements of a transformation program. Brookings (10 July 2015); https://www.brookings.edu/research/driving-sustainable-development-through-better-infrastructure-key-elements-of-a-transformation-program/

  80. Bowen, A., Kuralbayeva, K. & Tipoe, E. L. Characterising green employment: the impacts of ‘greening’ on workforce composition. Energy Econ. 72, 263–275 (2018).

    Article  Google Scholar 

  81. Gambhir, A., Green, F. & Pearson, P. J. G. Towards a Just and Equitable Low-Carbon Energy Transition Grantham Institute Briefing Paper No. 26 (Imperial College, 2018).

Download references

Acknowledgements

All authors are part of Oxford Net Zero, which is supported by the University of Oxford’s Strategic Research Fund. We also acknowledge funding from ClimateWorks (grant 19-1501), the Economic and Social Research Council (grant ES/S008381/1), EU Horizon 2020 (grants 869192 and 869357) and the Natural Environment Research Council (grant NE/V013106/1). The charts were produced by S. Littlewood.

Author information

Authors and Affiliations

Authors

Contributions

The production of the manuscript was coordinated by S.F., who also had overall editorial responsibility. All authors contributed to the content, structure and framing of the article. Drafting was led by K.A., M.A., S.F., L.R., N.S. and S.M.S.

Corresponding author

Correspondence to Sam Fankhauser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Hongbo Duan, Daniel Huppmann and Sally Benson for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fankhauser, S., Smith, S.M., Allen, M. et al. The meaning of net zero and how to get it right. Nat. Clim. Chang. 12, 15–21 (2022). https://doi.org/10.1038/s41558-021-01245-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-021-01245-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing