Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the non-Abelian Hirota difference equation is directly related to a commutator identity on an associative algebra. Evolutions generated by similarity transformations of elements of this algebra lead to a linear difference equation. We develop a special dressing procedure that results in an integrable non-Abelian Hirota difference equation and propose two regular reduction procedures that lead to a set of known equations, Abelian or non-Abelian, and also to some new integrable equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Zakharov and E. I. Schulman, Phys. D, 1, 192–202 (1980).

    Article  MathSciNet  Google Scholar 

  2. A. K. Pogrebkov, Theor. Math. Phys., 154, 405–417 (2008).

    Article  MathSciNet  Google Scholar 

  3. A. K. Pogrebkov, “2D Toda chain and associated commutator identity,” in: Geometry, Topology, and Mathematical Physics: S. P. Novikov’s Seminar: 2006–2007 (Amer. Math. Soc. Trans. Ser. 2, Vol. 224, V. M. Buchstaber and I. M. Krichever, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 261–270.

    Google Scholar 

  4. A. K. Pogrebkov, St. Petersburg Math. J., 22, 473–483 (2011).

    Article  MathSciNet  Google Scholar 

  5. R. Hirota, J. Phys. Soc. Japan, 43, 2074–2078 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Hirota, J. Phys. Soc. Japan, 50, 3785–3791 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. V. Zabrodin, Theor. Math. Phys., 113, 1347–1392 (1997).

    Article  MathSciNet  Google Scholar 

  8. A. V. Zabrodin, Theor. Math. Phys., 155, 567–584 (2008).

    Article  MathSciNet  Google Scholar 

  9. T. Miwa, Proc. Japan Acad. Ser. A Math. Sci., 58, 9–12 (1982).

    Article  MathSciNet  Google Scholar 

  10. L. V. Bogdanov and B. G. Konopelchenko, J. Math. Phys., 39, 4683–4700 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  11. L. V. Bogdanov and B. G. Konopelchenko, J. Math. Phys., 39, 4701–4728 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. J. C. Nimmo, J. Phys. A: Math. Gen., 39, 5053–5065 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  13. C. R. Gibson, J. J. C. Nimmo, and Y. Ohta, J. Phys. A: Math. Theor., 40, 12607–12617 (2007).

    Article  ADS  Google Scholar 

  14. A. Doliwa, Phys. Lett. A, 375, 1219–1224 (2011); arXiv:1006.3380v1 [nlin.SI] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, Commun. Math. Phys., 188, 267–304 (1997); arXiv:hepth/ 9604080v1 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. K. Polivanov, Theor. Math. Phys., 93, 1200–1224 (1992).

    Article  MathSciNet  Google Scholar 

  17. M. Boiti, F. Pempinelli, A. Pogrebkov, J. Math. Phys., 35, 4683–4718 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  18. I. M. Krichever, A. V. Zabrodin, Russ. Math. Surveys, 50, 1101–1150 (1995).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pogrebkov.

Additional information

With best wishes to Igor Viktorovich Tyutin

This research was performed at the Steklov Mathematical Institute of Russian Academy of Sciences and was funded by a grant from the Russian Science Foundation (Project No. 14-50-00005).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 187, No. 3, pp. 433–446, June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogrebkov, A.K. Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions. Theor Math Phys 187, 823–834 (2016). https://doi.org/10.1134/S0040577916060039

Download citation

  • Received:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1134/S0040577916060039

Keywords