Abstract
We give an overview of the integrability of the Hirota-Kimura discretizationmethod applied to algebraically completely integrable (a.c.i.) systems with quadratic vector fields. Along with the description of the basic mechanism of integrability (Hirota-Kimura bases), we provide the reader with a fairly complete list of the currently available results for concrete a.c.i. systems.
Similar content being viewed by others
References
Kahan, W., Unconventional Numerical Methods for Trajectory Calculations, Lecture notes, University of California, Berkeley, CA, October 1993.
Petrera, M., Pfadler, A., and Suris, Yu. B., On Integrability of Hirota-Kimura-Type Discretizations: Experimental Study of the Discrete Clebsch System, Experiment. Math., 2009, vol. 18, no. 2, pp. 223–247.
Kahan, W. and Li, R.-C., Unconventional Schemes for a Class of Ordinary Differential Equations (with Applications to the Korteweg-de Vries Equation), J. Comput. Phys., 1997, vol. 134, pp. 316–331.
Hirota, R. and Kimura, K., Discretization of the Euler Top, J. Phys. Soc. Japan, 2000, vol. 69, no. 3, pp. 627–630.
Kimura, K. and Hirota, R., Discretization of the Lagrange Top, J. Phys. Soc. Japan, 2000, vol. 69, no. 10, pp. 3193–3199.
Suris, Yu. B., The Problem of Integrable Discretization: Hamiltonian Approach, Progr. Math., vol. 219, Basel: Birkhäuser, 2003.
Sanz-Serna, J.M., An Unconventional Symplectic Integrator of W. Kahan, Appl. Numer. Math., 1994, vol. 16, pp. 245–250.
Adler, M., van Moerbeke, P., and Vanhaecke, P., Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergeb. Math. Grenzgeb. (3), vol. 47, Berlin-Heidelberg: Springer, 2004.
Quispel, G. R. W., Roberts, J.A.G., and Thompson, C. J., Integrable Mappings and Soliton Equations, Phys. D, 1989, vol. 34, pp. 183–192.
Suris, Yu. B., Integrable Mappings of the Standard Type, Funktsional. Anal. i Prilozhen., 1989, vol. 23, no. 1, pp. 84–85 [Funct. Anal. Appl., 1989, vol. 23, no. 1, pp. 74–76].
Suslov, G., Theoretical Mechanics, Moscow-Leningrad: Gostekhizdat, 1946.
Dragović, V. and Gajić, B., Hirota-Kimura Type Discretization of the Classical Nonholonomic Suslov Problem, Reg. Chaot. Dyn., 2008, vol. 13, no. 4, pp. 250–256.
Hitchin, N. J., Manton, N. S., and Murray, M.K., Symmetric Monopoles, Nonlinearity, 1995, vol. 8, no. 5, pp. 661–692.
Petrera, M. and Suris, Yu. B., On the Hamiltonian Structure of Hirota-Kimura Discretization of the Euler Top, Math. Nachr., 2010, no. 11, pp. 1654–1663.
Volterra, V., Sur la théorie des variations des latitudes, Acta Math., 1899, vol. 22, pp. 201–357.
Basak, I., Explicit Solution of the Zhukovski-Volterra Gyrostat, Reg. Chaot. Dyn., 2009, vol. 14, no. 2, pp. 223–236.
Veselov, A.P. and Shabat, A. B., Dressing Chains and Spectral Theory of the Schrödinger Operator, Funktsional. Anal. i Prilozhen., 1993, vol. 27, no. 2, pp. 1–21 [Funct. Anal. Appl., 1993, vol. 27, no. 2, pp. 81–96].
Golse, F., Mahalov, A., and Nicolaenko, B., Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains, in Instability in Models Connected with Fluid Flows: 1, Int. Math. Ser. (N. Y.), vol.6, New York: Springer, 2008, pp. 300–338.
Alber, M., Luther, G.G., Marsden, J.E., and Robbins, J., Geometric Phases, Reduction and Lie-Poisson Structure for the Resonant Three-Wave Interaction, Phys. D, 1998, nos. 1–4, vol. 123, pp. 271–290.
Marsden, J. and Ratiu, T., Introduction to Mechanics and Symmetry, Texts Appl. Math., vol. 17, 2nd ed., New York: Springer, 1999.
Kirchhoff, G., Über die Bewegung eines Rotationskörpers in einer Flüssigkeit, J. Reine Angew. Math., 1870, vol. 71, pp. 237–262.
Clebsch, A., Über die Bewegung eines Körpers in einer Flüssigkeit, Math. Ann., 1870, vol. 3, pp. 238–262.
Perelomov, A.M., Integrable Systems of Classical Mechanics and Lie Algebras: Vol. 1, Basel: Birkhäuser, 1990.
Reyman, A.G. and Semenov-Tian-Shansky, M.A., Group Theoretical Methods in the Theory of Finite Dimensional Integrable Systems, in Dynamical Systems VII: Integrable Systems. Nonholonomic Dynamical Systems, V. I. Arnol’d, S. P. Novikov (Eds.), Encyclopaedia Math. Sci., vol. 16, Berlin: Springer, 1994, pp. 116–225.
Ratiu, T., Nonabelian Semidirect Product Orbits and Their Relation to Integrable Systems, Oberwolfach Rep., 2006, vol. 3, no. 1.
Gaudin, M., Diagonalisation d’une classe d’Hamiltoniens de spin, J. Physique, 1976, vol. 37, no. 10, pp. 1089–1098.
Petrera, M. and Suris, Yu. B., An Integrable Discretization of the Rational su(2) Gaudin Model and Related Systems, Comm. Math. Phys., 2008, vol. 283, pp. 227–253.
Musso, F., Petrera, M., Ragnisco, O., and Satta, G., A Rigid Body Dynamics Derived from a Class of Extended Gaudin Models: An Integrable Discretization, Regul. Chaot. Dyn., 2005, vol. 10, no. 4, pp. 363–380.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Petrera, M., Pfadler, A. & Suris, Y.B. On integrability of Hirota-Kimura type discretizations. Regul. Chaot. Dyn. 16, 245–289 (2011). https://doi.org/10.1134/S1560354711030051
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1134/S1560354711030051