Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. The European Physical Journal B
  3. Article

Chaos synchronization in networks of coupled maps with time-varying topologies

  • Topical issue dedicated to ECCS2007 - Dresden
  • Open access
  • Published: 18 January 2008
  • Volume 63, pages 399–406, (2008)
  • Cite this article

You have full access to this open access article

Download PDF
The European Physical Journal B Aims and scope Submit manuscript
Chaos synchronization in networks of coupled maps with time-varying topologies
Download PDF
  • W. L. Lu1,2,
  • F. M. Atay1 &
  • J. Jost1 
  • 950 Accesses

  • 26 Citations

  • Explore all metrics

Abstract.

Complexity of dynamical networks can arise not only from the complexity of the topological structure but also from the time evolution of the topology. In this paper, we study the synchronous motion of coupled maps in time-varying complex networks both analytically and numerically. The temporal variation is rather general and formalized as being driven by a metric dynamical system. Four network models are discussed in detail in which the interconnections between vertices vary through time randomly. These models are: 1) i.i.d. sequences of random graphs with fixed wiring probability, 2) groups of graphs with random switches between the individual graphs, 3) graphs with temporary random failures of nodes, and 4) the meet-for-dinner model where the vertices are randomly grouped. We show that the temporal variation and randomness of the connection topology can enhance synchronizability in many cases; however, there are also instances where they reduce synchronizability. In analytical terms, the Hajnal diameter of the coupling matrix sequence is presented as a measure for the synchronizability of the graph topology. In topological terms, the decisive criterion for synchronization of coupled chaotic maps is that the union of the time-varying graphs contains a spanning tree.

Article PDF

Download to read the full article text

Similar content being viewed by others

Designing temporal networks that synchronize under resource constraints

Article Open access 01 June 2021

Sparse Network Optimization for Synchronization

Article 09 September 2021

Information Measures and Synchronization in Regular Ring Lattices with Discontinuous Local Dynamics

Chapter © 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Complex Networks
  • Dynamic Networks
  • Dynamical Systems
  • Network topology
  • Nonlinear Dynamics and Chaos Theory
  • Topology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • J. Jost, M.P. Joy, Phys. Rev. E 65, 016201 (2001); Y.H. Chen, G. Rangarajan, M. Ding, Phys. Rev. E 67, 026209 (2003); W. Lu, T. Chen, Physica D 198, 148 (2004); R.E. Amritkar, S. Jalan, C.-K. Hu, Phys. Rev. E 72, 016212 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • K. Kaneko, Prog. Theor. Phys. 74, 1033 (1985); T. Bohr, O.B. Christensen, Phys. Rev. Lett. 63, 2161 (1989); K. Kaneko, Theory and Applications of Coupled Map Lattices (Wiley, New York, 1993)

    Article  ADS  MATH  Google Scholar 

  • A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, 2001)

  • S. Morita, Phys. Rev. E 58, 4401 (1998); A.M. Batista, S.E. de. S. Pinto, R.L. Viana, S.R. Lopes, Phys. Rev. E 65, 056209 (2002)

    Article  ADS  Google Scholar 

  • T. Shinbrot, Phys. Rev. E 50, 3230 (1994); Y. Jiang, P. Parmananda, Phys. Rev. E 57, 4135 (1998); P.M. Gade, C.-K. Hu, Phys. Rev. E 65, 6409 (2000)

    Article  ADS  Google Scholar 

  • L.M. Pecora, T.L. Caroll, Phys. Rev. Lett. 80, 2109 (1998); G. Rangarajan, M. Ding, Phys. Lett. A 296, 204 (2002); F.M. Atay, T. Biyikoglu, J. Jost, Physica D 224, 35 (2006)

    Article  ADS  Google Scholar 

  • C.W. Wu, Nonlinearity 18 1057 (2005); W. Lu, T. Chen, IEEE T. CAS:-II 54:2, 136 (2007)

  • R. Olfati-Saber, R.M. Murray, IEEE T. Autom. Control 49:9, 1520 (2004)

    Google Scholar 

  • Y. Hatano, M. Mesbahi, IEEE Trans. Autom. Control 50:11, 1867 (2004)

  • T. Vicsek, A. Czirok, E.B. Jacob, I. Cohen, O. Schochet, Phys. Rev. Lett. 75, 1226 (1995); A. Jadbabaie, J. Lin, A.S. Morse, IEEE T. Autom. Control 48, 988 (2003).

    Article  ADS  Google Scholar 

  • L. Moreau, IEEE Trans. Autom. Control 50:2, 169 (2005)

  • J.H. Lü, G. Chen, IEEE Trans. Autom. Control 50, 841 (2005); I.V. Belykh, V.N. Belykh, M. Hasler, Physica D 195, 159 (2004); D.J. Stilwell, E.M. Bollt, D.G. Roberson, SIAM J. Appl. Dyn. Syst. 5:1, 140 (2006); S. Boccaletti, D.-U. Hwang, M. Chavez, A. Amann, J. Kurths, L.M. Pecora, Phys. Rev. E 74, 016102 (2006)

    Article  Google Scholar 

  • J. Hajnal, Proc. Camb. Phil. Soc. 54, 233 (1958); J. Hajnal, Proc. Camb. Phil. Soc. 52, 67 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Lu, F.M. Atay, J. Jost, SIAM Journal on Math. Anal. 39 4, 1231 (2007)

    Google Scholar 

  • W. Lu, F.M. Atay, J. Jost, Synchronization in coupled map networks with uncertain topologies (in preparation)

  • L. Arnold, Random Dynamical Systems (Springer-Verlag, Heidelberg, 1998); M. Dunford, J.T. Schwartz, Linear Operators (Interscience, New York, 1958)

  • P. Ashwin, J. Buescu, I. Stewart, Nonlinearity 9, 703 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Milnor, Commun. Math. Phys. 99, 177 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • L. Arnold, J. Diff. Equ. 177, 235 (2001)

    Article  MATH  Google Scholar 

  • J. Shen, Wavelet Anal. Multi. Meth. LNPAM 212, 341 (2000)

    Google Scholar 

  • Y. Fang, Ph.D. thesis (Case Western Reserve University, 1994)

  • P. Erdös, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)

    MathSciNet  MATH  Google Scholar 

  • R. Albert, H. Jeong, A.-L. Barabási, Nature 406:27, 378 (2000)

  • A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  • H. Hong, B.J. Kim, M.Y. Choi, H. Park, Phys. Rev. E 69, 067105 (2004)

    Article  ADS  Google Scholar 

  • W. Ren, R.W. Beard, T.W. McLain, Springer-Verlag Series: LNCIS 309, 171 (2004)

    Google Scholar 

  • F.M. Atay, T. Biyikoglu, Phys. Rev. E 72, 016217 (2005); F.M. Atay, T. Biyikoglu, J. Jost, IEEE Trans. Circ. Syst.-I 53:1, 92 (2006); F.M. Atay, T. Biyikoglu, J. Jost, Physica D 224, 35 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103, Leipzig, Germany

    W. L. Lu, F. M. Atay & J. Jost

  2. Lab. of Mathematics for Nonlinear Sciences, School of Mathematical Sciences, Fudan University, 200433, Shanghai, P.R. China

    W. L. Lu

Authors
  1. W. L. Lu
    View author publications

    Search author on:PubMed Google Scholar

  2. F. M. Atay
    View author publications

    Search author on:PubMed Google Scholar

  3. J. Jost
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to W. L. Lu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Lu, W., Atay, F. & Jost, J. Chaos synchronization in networks of coupled maps with time-varying topologies. Eur. Phys. J. B 63, 399–406 (2008). https://doi.org/10.1140/epjb/e2008-00023-3

Download citation

  • Received: 31 August 2007

  • Published: 18 January 2008

  • Issue date: June 2008

  • DOI: https://doi.org/10.1140/epjb/e2008-00023-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

PACS.

  • 05.45.Ra Coupled map lattices
  • 05.45.Xt Synchronization; coupled oscillators
  • 02.50.Ey Stochastic processes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature