Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. The European Physical Journal Special Topics
  3. Article

Sequential escapes: onset of slow domino regime via a saddle connection

  • Regular Article
  • Open access
  • Published: 12 December 2018
  • Volume 227, pages 1091–1100, (2018)
  • Cite this article

You have full access to this open access article

Download PDF
The European Physical Journal Special Topics Aims and scope Submit manuscript
Sequential escapes: onset of slow domino regime via a saddle connection
Download PDF
  • Peter Ashwin  ORCID: orcid.org/0000-0001-7330-49511,
  • Jennifer Creaser1 &
  • Krasimira Tsaneva-Atanasova1 
  • 589 Accesses

  • 7 Citations

  • 1 Altmetric

  • Explore all metrics

Abstract

We explore sequential escape behaviour of coupled bistable systems under the influence of stochastic perturbations. We consider transient escapes from a marginally stable “quiescent” equilibrium to a more stable “active” equilibrium. The presence of coupling introduces dependence between the escape processes: for diffusive coupling there is a strongly coupled limit (fast domino regime) where the escapes are strongly synchronised while for intermediate coupling (slow domino regime) without partially escaped stable states, there is still a delayed effect. These regimes can be associated with bifurcations of equilibria in the low-noise limit. In this paper, we consider a localized form of non-diffusive (i.e. pulse-like) coupling and find similar changes in the distribution of escape times with coupling strength. However, we find transition to a slow domino regime that is not associated with any bifurcations of equilibria. We show that this transition can be understood as a codimension-one saddle connection bifurcation for the low-noise limit. At transition, the most likely escape path from one attractor hits the escape saddle from the basin of another partially escaped attractor. After this bifurcation, we find increasing coefficient of variation of the subsequent escape times.

Article PDF

Download to read the full article text

Similar content being viewed by others

Diffusive coupling facilitates and impedes noise-induced escape in interacting bistable elements

Article Open access 14 May 2024

Homogenization of Coupled Fast-Slow Systems via Intermediate Stochastic Regularization

Article Open access 30 April 2021

Bursting oscillations and bifurcation mechanisms in a 4D non-smooth Sprott C model

Article 27 July 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cell-cycle Exit
  • Dynamical Systems
  • Ergodic Theory
  • Markov Process
  • Multistability
  • Nonlinear Dynamics and Chaos Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H.A. Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Ashwin, J. Creaser, K. Tsaneva-Atanasova, Phys. Rev. E 96, 052309 (2017)

    Article  ADS  Google Scholar 

  3. H.-X. Zhou, Q. Rev. Biophys. 43, 219 (2010)

    Article  Google Scholar 

  4. G. Di Ges, T. Lelivre, D. Le Peutrec, B. Nectoux, Faraday Discuss. 195, 469 (2016)

    Article  ADS  Google Scholar 

  5. M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, NY, 1998)

  6. N. Berglund, Fields 19, 459 (2013)

    Google Scholar 

  7. N. Berglund, B. Gentz, Induced Phenomena in Slow-Fast Dynamical Systems (Springer Verlag, London, 2006)

  8. J. Wang, L. Xu, E. Wang, S. Huang, Biophys. J. 99, 29 (2010)

    Article  ADS  Google Scholar 

  9. N. Berglund, B. Fernandez, B. Gentz, Nonlinearity 20, 2551 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Berglund, B. Fernandez, B. Gentz, Nonlinearity 20, 2583 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Frankowicz, E. Gudowska-Nowak, Physica A 116, 331 (1982)

    Article  ADS  Google Scholar 

  12. H. Malchow, W. Ebeling, R. Feistel, L. Schimansky-Geier, Annalen der Physik 495, 151 (1983)

    Article  ADS  Google Scholar 

  13. A. Neiman, Phys. Rev. E 49, 3484 (1994)

    Article  ADS  Google Scholar 

  14. Y. Zhang, G. Hu, L. Gammaitoni, Phys. Rev. E 58, 2952 (1998)

    Article  ADS  Google Scholar 

  15. K. Wood, C. Van den Broeck, R. Kawai,

  16. V.R. Assis, M. Copelli, Phys. Rev. E 80, 061105 (2009)

    Article  ADS  Google Scholar 

  17. R.E. Mirollo, S.H. Strogatz, SIAM J. Appl. Math. 50, 1645 (1990)

    Article  MathSciNet  Google Scholar 

  18. G.B. Ermentrout, N. Kopell, SIAM J. Appl. Math. 50, 125 (1990)

    Article  MathSciNet  Google Scholar 

  19. T. Stankovski, T. Pereira, P.V. McClintock, A. Stefanovska, Rev. Mod. Phys. 89, 045001 (2017)

    Article  ADS  Google Scholar 

  20. H.L. Zou, Y. Katori, Z.C. Deng, K. Aihara, Y.C. Lai, Chaos 25, 103109 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. A.V. Proskurnikov, M. Cao, IEEE Trans. Automat. Control 62, 5873 (2017)

    Article  MathSciNet  Google Scholar 

  22. Y. Wang, K. Mosalakanti, F. Núñez, S. Deligeorges, F.J. Doyle, III, Comput. Netw. 127, 161 (2017)

    Article  Google Scholar 

  23. Y. Li, J. Klingner, N. Correll, in Distributed Autonomous Robotic Systems (Springer, Cham, 2018), pp. 359–371

  24. B. Chen, J.R. Engelbrecht, R. Mirollo, Phys. Rev. E 95, 022207 (2017)

    Article  ADS  Google Scholar 

  25. J. Creaser, K. Tsaneva-Atansova, P. Ashwin, SIAM J. Applied Dyn. Syst. 17, 500 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics and EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK

    Peter Ashwin, Jennifer Creaser & Krasimira Tsaneva-Atanasova

Authors
  1. Peter Ashwin
    View author publications

    Search author on:PubMed Google Scholar

  2. Jennifer Creaser
    View author publications

    Search author on:PubMed Google Scholar

  3. Krasimira Tsaneva-Atanasova
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Peter Ashwin.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwin, P., Creaser, J. & Tsaneva-Atanasova, K. Sequential escapes: onset of slow domino regime via a saddle connection. Eur. Phys. J. Spec. Top. 227, 1091–1100 (2018). https://doi.org/10.1140/epjst/e2018-800038-5

Download citation

  • Received: 02 April 2018

  • Revised: 13 June 2018

  • Published: 12 December 2018

  • Issue date: November 2018

  • DOI: https://doi.org/10.1140/epjst/e2018-800038-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Profiles

  1. Peter Ashwin View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature