Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

Spatiotemporal behavior in a predator–prey model with herd behavior and cross-diffusion and fear effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, we investigate the fear effect on the spatiotemporal behavior of the predator–prey model with prey social behavior and cross-diffusive. Our main interest is to determine the existence of Turing patterns and the fear effect performed by predators on the prey population and the group defense. The fear can lead to a partition of the prey herd which is known as prey escaping. It is obtained that the system has rich dynamics elaborated by the presence of Turing patterns and Turing–Hopf bifurcation. The nature of Turing patterns is successfully discussed by analyzing the amplitude equations with a multiple-timescale technique. After studying the stability of these amplitude equations, it has been identified various Turing patterns driven by the cross-diffusion. Further, the effect of the fear rate or escaping rate on the behavior of the solution is discussed. The theoretical results are checked numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems. Nonlinear Anal. Real World Appl. 12(4), 2319–2338 (2011)

    Article  Google Scholar 

  2. I.M. Bulai, E. Venturino, Shape effects on herd behavior in ecological interacting population models. Math. Comput. Simul. 141, 40–55 (2017)

    Article  Google Scholar 

  3. D. Barman, J. Roy, H. Alrabaiah, P. Panja, S.P. Mondal, S. Alam, Impact of predator incited fear and prey refuge in a fractional order prey predator model. Chaos Solit. Fract. 142, 110420 (2021)

    Article  Google Scholar 

  4. P.A. Braza, Predator–prey dynamics with square root functional responses. Nonlinear Anal. Real World Appl. 13, 1837–1843 (2012)

    Article  Google Scholar 

  5. S. Bentout, S. Djilalin, S. Kumar, Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator–prey interaction model. Phys. A (2021). https://doi.org/10.1016/j.physa.2021.125840

    Article  Google Scholar 

  6. F. Brauer, C.C. Chavez, Mathematical Models in Population Biology and Epidemiology (Springer, New York, NY, 2012)

    Book  Google Scholar 

  7. A. Batabyal, D. Jana, Significance of additional food to mutually interfering predator under herd behavior of prey on the stability of a spatio-temporal system. Commun. Nonlinear Sci. Numer. Simul. 93, 105480 (2021)

    Article  Google Scholar 

  8. M.F. Carfora, I. Torcicollo, Cross-diffusion-driven instability in a predator-prey system with fear and group defense. Mathematics 8(8), 1244 (2020)

    Article  Google Scholar 

  9. D. Duan, B. Niu, J. Wei, Hopf–Hopf bifurcation and chaotic attractors in a delayed diffusive predator–prey model with fear effect. Chaos Solit. Fract. 123, 206–216 (2019)

    Article  Google Scholar 

  10. S. Djilali, Impact of prey herd shape on the predator–prey interaction. Chaos Solit. Fract. 120, 139–148 (2019)

    Article  Google Scholar 

  11. S. Djilali, Effect of herd shape in a diffusive predator–prey model with time delay. J. Appl. Anal. Comput. 9(2), 638–654 (2019)

    Google Scholar 

  12. S. Djilali, Pattern formation of a diffusive predator–prey model with herd behavior and nonlocal prey competition. Math. Methods Appl. Sci. 43(5), 2233–2250 (2020)

    Article  Google Scholar 

  13. S. Djilali, Herd behavior in a predator–prey model with spatial diffusion: bifurcation analysis and Turing instability. J. Appl. Math. Comput. 58, 125–149 (2018)

    Article  Google Scholar 

  14. S. Djilali, Spatiotemporal patterns induced by cross-diffusion in predator–prey model with prey herd shape effect. Int. J. Biomath. 13(4), 2050030 (2020)

    Article  Google Scholar 

  15. R. Han, L.N. Guin, B. Dai, Cross-diffusion-driven pattern formation and selection in a modified Leslie–Gower predator–prey model with fear effect. J. Biol. Syst. 28(1), 1–38 (2021)

    Google Scholar 

  16. M. Ipsen, F. Hynne, P.G. Sorensen, Amplitude equations for reaction–diffusion systems with a Hopf bifurcation and slow real modes. Phys. D 136(1–2), 66–92 (2000)

    Article  Google Scholar 

  17. D. Jia, T. Zhang, S. Yuan, Pattern dynamics of a diffusive toxin producing phytoplankton-zooplankton model with three-dimensional patch. Int. J. Bifurc. Chaos 29(4), 19300111–1930019 (2019)

    Article  Google Scholar 

  18. C. Jianzhi, H. Sun, P. Hao, P. Wang, Bifurcation and turing instability for a predator–prey model with nonlinear reaction cross-diffusion. Appl. Math. Model. 89(2), 1663–1677 (2021)

    Google Scholar 

  19. Y. Kuramoto, T. Tsuzuki, On the formation of dissipative structures in reaction–diffusion systems. Prog. Theor. Phys. 54, 687–699 (1975)

    Article  Google Scholar 

  20. Q. Liu, D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator–prey model. Appl. Math. Lett. 122, 106756 (2021)

    Article  Google Scholar 

  21. X. Liu, T. Zhang, X. Meng, T. Zhang, Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis. Phys. A Stat. Mech. Its Appl. 496, 446–460 (2018)

    Article  Google Scholar 

  22. Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Stationary distribution and extinction of a stochastic predator–prey model with herd behavior. J. Frankl. Inst. 355(16), 8177–8193 (2018)

    Article  Google Scholar 

  23. J.D. Murray, Mathematical Biology I: An Introduction. Interdisciplinary Applied Mathematics (Springer, New York, 2002)

    Book  Google Scholar 

  24. J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics (Springer, New York, NY, 2003)

    Book  Google Scholar 

  25. S. Mishra, R.K. Upadhyay, Strategies for the existence of spatial patterns in predator–prey communities generated by cross-diffusion. Nonlinear Anal. Real World Appl. 51, 103018 (2020)

    Article  Google Scholar 

  26. Q. Ouyang, Nonlinear Science and the Pattern Dynamics Introduction (Peking University Press, Beijing, 2010)

    Google Scholar 

  27. Ouyang , Q.: Pattern dynamics in reaction–diffusion systems. Shanghai Scientific and Technological Education Publishing House, Shanghai (2000)

  28. H. Qi, X. Meng, Threshold behavior of a stochastic predator–prey system with prey refuge and fear effect. Appl. Math. Lett. 113, 106846 (2021)

    Article  Google Scholar 

  29. Y. Peng, G. Zhang, Dynamics analysis of a predator–prey model with herd behavior and nonlocal prey competition. Math. Comput. Simul. 170, 366–378 (2020)

    Article  Google Scholar 

  30. J. Roy, D. Barman, S. Alam, Role of fear in a predator–prey system with ratio-dependent functional response in deterministic and stochastic environment. Biosystems 197, 104176 (2020)

    Article  Google Scholar 

  31. G.Q. Sun, G. Zhang, Z. Jin, L. Li, Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58(1), 75–84 (2009)

    Article  Google Scholar 

  32. G.Q. Sun, Spatial patterns of a predator–prey model with cross diffusion. Nonlinear Dyn. 69(4), 1631–8 (2012)

    Article  Google Scholar 

  33. D. Song, C. Li, Y. Song, Stability and cross-diffusion-driven instability in a diffusive predator–prey system with hunting cooperation functional response. Nonlinear Anal. Real World Appl. 54, 103106 (2020)

    Article  Google Scholar 

  34. F. Souna, A. Lakmeche, S. Djilali, The effect of the defensive strategy taken by the prey on predator–prey interaction. J. Appl. Math. Comput. 64, 665–690 (2020)

    Article  Google Scholar 

  35. F. Souna, S. Djilali, F. Charif, Mathematical analysis of a diffusive predator–prey model with herd behavior and prey escaping. Math. Model. Nat. Phenom. 15, 23–24 (2020)

    Article  Google Scholar 

  36. F. Souna, A. Lakmeche, S. Djilali, Spatiotemporal patterns in a diffusive predator–prey model with protection zone and predator harvesting. Chaos Solit. Fract. 140, 110180 (2020)

    Article  Google Scholar 

  37. K. Sarkar, S. Khajanchib, Impact of fear effect on the growth of prey in a predator–prey interaction model. Ecol. Complex. 42, 100826 (2020)

    Article  Google Scholar 

  38. Q.J. Tan, Global existence of classical solutions for a class of diffusive ecological models with two free boundaries and cross-diffusion. Nonlinear Anal. Real World Appl. 60, 103302 (2021)

    Article  Google Scholar 

  39. S.X. Wu, X.Y. Meng, Dynamics of a delayed predator–prey system with fear effect, herd behavior and disease in the susceptible prey. AIMS Math. 6(4), 3654–3685 (2021)

    Article  Google Scholar 

  40. W. Yang, Analysis on existence of bifurcation solutions for a predator–prey model with herd behavior. Appl. Math. Model. 53, 433–446 (2018)

    Article  Google Scholar 

  41. T. Zhang, Y. Xing, H. Zang, M. Han, Spatiotemporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78, 265–277 (2014)

    Article  Google Scholar 

  42. A. Skubachevskii, On necessary conditions for the fredholm solvability of nonlocal elliptic problems. Proc. Steklov Inst. Math. 260(1), 238–53 (2008)

    Article  Google Scholar 

  43. T. Kuniya, T.M. Touaoula, Global stability for a class of functional differential equations with distributed delay and non-monotone bistable nonlinearity. Math. Biosci. Eng. 17(6), 7332–7352 (2020)

    Article  Google Scholar 

  44. T.M. Touaoula, Global dynamics for a class of reaction–diffusion equations with distributed delay and Neumann condition. Commun. Pure Appl. Anal. 19(5), 2473–2490 (2018)

    Article  Google Scholar 

  45. M.N. Frioui, T.M. Touaoula, B.E. Ainseba, Global dynamics of an age-structured model with relapse. Discrete Contin. Dyn. Syst. Ser. B 25(6), 2245–2270 (2020)

    Google Scholar 

  46. N. Bessonov, G. Bocharov, T.M. Touaoula, S. Trofimchuk, V. Volpert, Delay reaction–diffusion equation for infection dynamics. Discrete Contin. Dyn. Syst. Ser. B 24(5), 2073–2091 (2019)

    Google Scholar 

  47. T.M. Touaoula, Global stability for a class of functional differential equations (Application to Nicholson’s blowflies and Mackey–Glass models). Discrete Contin. Dyn. Syst. Ser. B 38(9), 4391–4419 (2018)

    Article  Google Scholar 

  48. I. Boudjema, T.M. Touaoula, Global stability of an infection and vaccination age-structured model with general nonlinear incidence. J. Nonlinear Funct. Anal. 2018(33), 1–21 (2018)

    Google Scholar 

  49. S. Kumar, A new analytical modelling for fractional telegraph equation via Laplace transform. Appl. Math. Model. 38(13), 3154–3163 (2014)

    Article  Google Scholar 

  50. B. Ghanbari, S. Kumat, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos. Solit. Fract. 133, 109619 (2020)

    Article  Google Scholar 

  51. E.F.D. Goufo, S. Kumar, S.B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solit. Fract. 130, 109467 (2020)

    Article  Google Scholar 

  52. S. Kumar, R. Kumar, R.P. Agarwal, B. Samet, A study of fractional Lotka–Volterra population model using Haar wavelet and Adams–Bashforth–Moulton methods. Math. Methods Appl. Sci. 43(8), 5564–5578 (2020)

    Article  Google Scholar 

  53. S. Kumar, S. Ghosh, B. Samet, E.F.D. Goufo, An analysis for heat equations arises in diffusion process using new Yang–Abdel–Aty–Cattani fractional operator. Math. Meth. Appl. Sci. 43(9), 6062–6080 (2020)

    Article  Google Scholar 

  54. Veeresha, P., Prakasha, D.G., Kumar, S.: A fractional model for propagation of classical optical solitons by using nonsingular derivative. Math. Methods Appl. Sci. https://doi.org/10.1002/mma.6335 (2020)

  55. S. Kumar, R. Kumar, C. Cattani, B. Samet, Chaotic behaviourof fractional predator–prey dynamical system. Chaos Solit. Fract. 135, 109811 (2020)

    Article  Google Scholar 

  56. S. Kumar, R. Kumar, M.S. Osman, B. Samet, A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Part. Differ. Equ. 37(2), 1250–1268 (2021)

    Article  Google Scholar 

  57. S. Kumar, S. Ghosh, R. Kumar, M. Jleli, A fractional model for population dynamics of two interacting species by using spectral and Hermite wavelets methods. Numer. Methods Part. Differ. Equ. 37(2), 1652–1672 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

S. Djilali is partially supported by the DGRSDT of Algeria No. C00L03UN130120200004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Djilali.

Appendix A. The expressions of the terms of the amplitude equations (3.11)

Appendix A. The expressions of the terms of the amplitude equations (3.11)

First, we give the expressions of \(f^{(1)}_{N_{1}N_{1}},\ldots ,f^{(1)}_{N_{2}N_{2}N_{2}}\) and \(f^{(2)}_{N_{1}N_{1}},\ldots ,f^{(2)}_{N_{2}N_{2}N_{2}}\) of (3.1) as

$$\begin{aligned}&f^{(1)}_{N_{1}N_{1}}=-2\dfrac{r}{k}+\alpha (1-\alpha ) \beta ^{\alpha } (1-\eta )^{\alpha }(N_{1}^{*})^{\alpha -2}N_{2}^{*},\\&\quad f^{(1)}_{N_{1}N_{2}}=-\alpha \beta ^{\alpha }(1-\eta )^{\alpha }(N_{1}^{*})^{\alpha -1}-\gamma \eta ,\quad f^{(1)}_{N_{2}N_{2}}=0, \\&f^{(1)}_{N_{1}N_{1}N_{1}}=\alpha (1-\alpha )(\alpha -2) \beta ^{\alpha } (1-\eta )^{\alpha }(N_{1}^{*})^{\alpha -3}N_{2}^{*},\\&\quad f^{(1)}_{N_{1}N_{1}N_{2}}=\alpha (1-\alpha ) \beta ^{\alpha } (1-\eta )^{\alpha }(N_{1}^{*})^{\alpha -2},\quad f^{(1)}_{N_{2}N_{1}N_{2}}=0,\\&f^{(1)}_{N_{2}N_{2}N_{2}}=0,\quad f^{(2)}_{N_{2}N_{2}}=0,\\&\quad f^{(2)}_{N_{1}N_{2}}=e\alpha \beta ^{\alpha } (1-\eta )^{\alpha }(N_{1}^{*})^{\alpha -1}+e\gamma \eta ,\quad f^{(2)}_{N_{1}N_{1}}=e\alpha (\alpha -1) \beta ^{\alpha } (1-\eta )^{\alpha }(N_{1}^{*})^{\alpha -2}N_{2}^{*} \\&f^{(2)}_{N_{1}N_{1}N_{1}}=e\alpha (\alpha -1)(\alpha -2) \beta ^{\alpha } (1-\eta )^{\alpha }(N_{1}^{*})^{\alpha -3}N_{2}^{*},\\&\quad f^{(2)}_{N_{1}N_{2}N_{2}}=0,\quad f^{(2)}_{N_{2}N_{2}N_{2}}=0. \end{aligned}$$

Next, by using the standard method of multiple timescales developed in [26, 27], we try to extract the coefficients of amplitude equations (3.11) of the cross-diffusion model (1.2) near the onset \(\delta _{21}=\delta _{21}^\mathrm{T}\). Taking the multiple timescales \(t_{0}=t, \ t_{1}=\epsilon t, \ t_{2}=^{2}\epsilon t\), then we obtain

$$\begin{aligned} \dfrac{\partial }{\partial t}=\dfrac{\partial }{\partial t_{0}}+\epsilon \dfrac{\partial }{\partial t_{1}}+\epsilon ^{2}\dfrac{\partial }{\partial t_{2}}+O(\epsilon ^{2}). \end{aligned}$$
(A1)

From Eq. (3.1), if we destabilize the coefficients of \(\epsilon ^{i}\), we get

$$\begin{aligned} L_{T}\left( \begin{array}{c} N_{1}^{(1)}\\ N_{2}^{(1)} \end{array} \right) =\left( \begin{array}{c} 0\\ 0 \end{array} \right) . \end{aligned}$$
(A2)

At the perturbation \(O(\epsilon ^{2})\), we have

$$\begin{aligned} L_{T}\left( \begin{array}{c} N_{1}^{(2)}\\ N_{2}^{(2)} \end{array} \right) =&\dfrac{\partial }{\partial t_{1}}\left( \begin{array}{c} N_{1}^{(1)}\\ N_{2}^{(1)} \end{array} \right) -\delta _{21}^{(1)}J\left( \begin{array}{c} N_{1}^{(1)}\\ N_{2}^{(1)} \end{array} \right) \nonumber \\&-\dfrac{1}{2}\left( \begin{array}{lc} f^{(1)}_{N_{1}N_{1}}\left( N_{1}^{(1)}\right) ^{2}+2f^{(1)}_{N_{1}N_{2}}N_{1}^{(1)}N_{2}^{(1)}+f^{(1)}_{N_{2}N_{2}}\left( N_{2}^{(1)}\right) ^{2}\\ f^{(2)}_{N_{1}N_{1}}\left( N_{1}^{(1)}\right) ^{2}+2f^{(2)}_{N_{1}N_{2}}N_{1}^{(1)}N_{2}^{(1)}+f^{(2)}_{N_{2}N_{2}}\left( N_{2}^{(1)}\right) ^{2} \end{array} \right) \triangleq \left( \begin{array}{c} F_{N_{1}}\\ F_{N_{2}} \end{array} \right) , \end{aligned}$$
(A3)

with a similar process, we can obtain

$$\begin{aligned} L_{T}\left( \begin{array}{c} N_{1}^{(3)}\\ N_{2}^{(3)} \end{array} \right)= & {} \left( \begin{array}{c} \dfrac{\partial N_{1}^{(1)}}{\partial t_{2}}+\dfrac{\partial N_{1}^{(2)}}{\partial t_{1}}\\ \dfrac{\partial N_{2}^{(1)}}{\partial t_{2}}+\dfrac{\partial N_{2}^{(2)}}{\partial t_{1}} \end{array} \right) -\delta _{21}^{(1})J\left( \begin{array}{c} N_{1}^{(2)}\\ N_{2}^{(2)} \end{array} \right) -\delta _{21}^{1}J\left( \begin{array}{c} N_{1}^{(1)}\\ N_{2}^{(1)} \end{array} \right) \nonumber \\&-\left( \begin{array}{lc} f^{(1)}_{N_{1}N_{1}}N_{1}^{(1)}N_{1}^{(2)}+f^{(1)}_{N_{1}N_{2}}\left( N_{1}^{(1)}N_{2}^{(2)}+N_{1}^{(2)}N_{2}^{(1)}\right) +f^{(1)}_{N_{2}N_{2}}N_{2}^{(1)}N_{2}^{(2)}\\ f^{(2)}_{N_{1}N_{1}}N_{1}^{(1)}N_{1}^{(2)}+2f^{(2)}_{N_{1}N_{2}}\left( N_{1}^{(2)}N_{1}^{(2)}+N_{1}^{(2)}N_{1}^{(2)}\right) +f^{(2)}_{N_{2}N_{2}}N_{2}^{(1)}N_{2}^{(2)} \end{array} \right) \nonumber \\&-\dfrac{1}{6}\left( \begin{array}{lc} f^{(1)}_{N_{1}N_{1}N_{1}}\left( N_{1}^{(1)}\right) ^{3}+3f^{(1)}_{N_{1}N_{1}N_{2}}\left( N_{1}^{(2)}\right) ^{2}N_{2}^{(1)}+3f^{(1)}_{N_{1}N_{2}N_{2}}N_{1}^{(1)}\left( N_{2}^{(1)}\right) ^{2}+f^{(1)}_{N_{2}N_{2}N_{2}}\left( N_{2}^{(1)}\right) ^{3}\\ f^{(2)}_{N_{1}N_{1}N_{1}}\left( N_{1}^{(1)}\right) ^{3}+3f^{(2)}_{N_{1}N_{1}N_{2}}\left( N_{1}^{(2)}\right) ^{2}N_{2}^{(1)}+3f^{(2)}_{N_{1}N_{2}N_{2}}N_{1}^{(1)}\left( N_{2}^{(1)}\right) ^{2}+f^{(2)}_{N_{2}N_{2}N_{2}}\left( N_{2}^{(1)}\right) ^{3} \end{array} \right) \nonumber \\&\triangleq \left( \begin{array}{c} G_{N_{1}}\\ G_{N_{2}} \end{array} \right) . \end{aligned}$$
(A4)

For the first order, after solving (A2, we find

$$\begin{aligned} \left( \begin{array}{c} N_{1}^{(1)}\\ N_{2}^{(1)} \end{array} \right) =\left( \begin{array}{c} \Phi \\ 1 \end{array} \right) \left( \sum _{i=1}^{3}V_{i}\exp (jn_{i}.r)+\right) +c.c., \end{aligned}$$

where \(\Phi =\dfrac{\delta _{22}n_{T}^{2}}{C-\delta _{21}^\mathrm{T}n_{T}^{2}}\) and \(\vert n_{i}\vert =n_{T}\). \(V_{i}\) represents the amplitude of the corresponding \(\exp (jn_{i}.r), \quad \text {for} \ i=1,2,3\). Applying the Fredholm solvability conditions [42], the vector function at the right-hand side of Eq. (A3) should be orthogonal to the zero eigenvectors of the adjoint operator \(L_{T}^{*}\) of \(L_{T}\). Thus, the zero eigenvectors of the operator \(L_{T}^{*}\) are

$$\begin{aligned} \left( \begin{array}{c} 1\\ \chi \end{array} \right) \exp (-jn_{i}.r)+c.c.,\quad i=1,2,3, \end{aligned}$$
(A5)

where \(\chi =\dfrac{\delta _{11}n_{T}^{2}-A}{C-\delta _{21}^\mathrm{T}n_{T}^{2}}\). Using the orthogonality condition, we find

$$\begin{aligned} (1,\chi )\left( \begin{array}{c} F^{i}_{N_{1}}\\ F^{i}_{N_{2}} \end{array} \right) =0,\quad i=1,2,3, \end{aligned}$$
(A6)

where \(F^{(i}_{N_{1}}\) and \(F^{i}_{N_{2}}\) stand for coefficients corresponding to \(\exp (-jn_{i}.r)\) for \(F_{N_{1}}\), \(F_{N_{2}}\), respectively.

From (A6), we have

$$\begin{aligned} \left\{ \begin{array}{lcccc} (\Phi +\chi )\dfrac{\partial V_{1}}{\partial t_{1}}=-n^{2}_{T}\delta _{21}^{(1)}\Phi \chi V_{1}+(f_{20}^{(1)}+\chi f_{20}^{(2)})\overline{V_{2}} \ \overline{V_{3}},\\ (\Phi +\chi )\dfrac{\partial V_{2}}{\partial t_{1}}=-n^{2}_{T}\delta _{21}^{(1)}\Phi \chi V_{2}+(f_{20}^{(1)}+\chi f_{20}^{(2)})\overline{V_{1}} \ \overline{V_{3}}, \\ (\Phi +\chi )\dfrac{\partial V_{3}}{\partial t_{1}}=-n^{2}_{T}\delta _{21}^{(1)}\Phi \chi V_{3}+(f_{20}^{(1)}+\chi f_{20}^{(2)})\overline{V_{1}} \ \overline{V_{2}}, \end{array} \right. \end{aligned}$$
(A7)

where

$$\begin{aligned} \left\{ \begin{array}{lcccc} f_{20}^{(1)}=f_{N_{1}N_{1}}^{(1)}\Phi ^{2}+2f_{N_{1}N_{2}}^{(1)}\Phi +f_{N_{2}N_{2}}^{(1)}, \\ f_{20}^{(2)}=f_{N_{1}N_{1}}^{(2)}\Phi ^{2}+2f_{N_{1}N_{2}}^{(2)}\Phi +f_{N_{2}N_{2}}^{(2)}. \end{array} \right. \end{aligned}$$
(A8)

From a similar proceeding in (A3), one can find

$$\begin{aligned} \left( \begin{array}{c} N_{1}^{(2)}\\ N_{2}^{(2)} \end{array} \right)= & {} \left( \begin{array}{c} X_{0}\\ Y_{0} \end{array} \right) +\sum _{i=1}^{3}\left( \begin{array}{c} X_{i}\\ Y_{i} \end{array} \right) \exp (jn_{i}.r)+\sum _{i=1}^{3}\left( \begin{array}{c} X_{ii}\\ Y_{ii} \end{array} \right) \exp (2jn_{i}.r). \nonumber \\&+\sum _{i=1}^{3}\left( \begin{array}{c} X_{12}\\ Y_{12} \end{array} \right) \exp (j(n_{1}-n_{2}).r)+\sum _{i=1}^{3}\left( \begin{array}{c} X_{23}\\ Y_{23} \end{array} \right) \exp (j(n_{2}-n_{3}).r) \nonumber \\&+\sum _{i=1}^{3}\left( \begin{array}{c} X_{31}\\ Y_{31} \end{array} \right) \exp (j(n_{3}-n_{1}).r)+c.c. \end{aligned}$$
(A9)

Clearly, the coefficients in (A9) is determined whether we solve the linear equations of \(\exp (0), \ \exp (jn_{i}.r), \ \exp (2jn_{i}.r)\) and \(\exp (j(n_{1}-n_{2}).r)\) denoting by

$$\begin{aligned} \Upsilon _{n}=\left( \begin{array}{cc} A-\delta _{11}n^{2} &{}B-\delta _{12}n^{2}\\ C-\delta _{21}n^{2} &{} -\delta _{22}n^{2} \end{array} \right) . \end{aligned}$$
(A10)

Then, for \(X_{i}=\Phi Y_{i}, \ i=1,2,3\), we have

$$\begin{aligned} \left( \begin{array}{c} X_{0}\\ Y_{0} \end{array} \right)= & {} -\Upsilon ^{-1}_{0}\left( \begin{array}{c} f^{(1)}_{20}\\ f^{(2)}_{20} \end{array} \right) \left( \vert V_{1} \vert ^{2}+\vert V_{2} \vert ^{2}+\vert V_{3} \vert ^{2}\right) =\left( \begin{array}{c} W_{N_{1}0}\\ W_{N_{2}0} \end{array} \right) \left( \vert V_{1} \vert ^{2}+\vert V_{2} \vert ^{2}+\vert V_{3} \vert ^{2}\right) .\\ \left( \begin{array}{c} X_{11}\\ Y_{11} \end{array} \right)= & {} -\Upsilon ^{-1}_{2n_{T}}\left( \begin{array}{c} \dfrac{f^{(1)}_{20}}{2}\\ \dfrac{f^{(2)}_{20}}{2} \end{array} \right) V_{1}^{2}=\left( \begin{array}{c} W_{N_{1}1}\\ W_{N_{2}1} \end{array} \right) V_{1}^{2} \end{aligned}$$

and

$$\begin{aligned} \left( \begin{array}{c} X_{12}\\ Y_{12} \end{array} \right) =-\Upsilon ^{-1}_{\sqrt{3}n_{T}}\left( \begin{array}{c} f^{(1)}_{20}\\ f^{(2)}_{20} \end{array} \right) V_{1}\overline{V_{2}}=\left( \begin{array}{c} W_{N_{1}2}\\ W_{N_{2}2} \end{array} \right) V_{1}\overline{V_{2}}. \end{aligned}$$

At \(O(\epsilon ^{3})\), we have

$$\begin{aligned}&\left( \begin{array}{c} G_{N_{1}}^{1}\\ G_{N_{1}}^{2} \end{array} \right) =\left( \begin{array}{c} \Phi \left( \dfrac{\partial Y_{1}}{\partial t_{1}}+\dfrac{\partial V_{1}}{\partial t_{2}}\right) \\ \dfrac{\partial Y_{1}}{\partial t_{1}}+\dfrac{\partial V_{1}}{\partial t_{2}} \end{array} \right) +n_{T}^{2}J\left( \begin{array}{c} \Phi Y_{1}\\ Y_{1} \end{array} \right) +n_{T}^{2}J\left( \begin{array}{c} \Phi V_{1}\\ V_{1} \end{array} \right) \nonumber \\&-\left( \begin{array}{lcccc} ((f^{(1)}_{N_{1}N_{1}}\Phi +f^{(1)}_{N_{1}N_{2}})(W_{N_{1}0}+W_{N_{1}1})+(f^{(1)}_{N_{1}N_{2}}\Phi +f^{(1)}_{N_{2}N_{2}})(Z_{N_{2}}0+W_{N_{2}1}))\vert V_{1}\vert ^{2}\\ +\left[ (f^{(1)}_{N_{1}N_{1}}\Phi {+}f^{(1)}_{N_{1}N_{2}})(W_{N_{1}0}{+}W_{N_{1}2}){+}(f^{(1)}_{N_{1}N_{2}}\Phi {+}f^{(1)}_{N_{2}N_{2}})(W_{N_{2}0}{+}W_{N_{2}2})(\vert V_{2}\vert ^{2}{+}\vert V_{3}\vert ^{2})\right] V_{1}{+}f^{(1)}_{20}\left( \overline{V_{2}} \ \overline{Y_{3}}{+}\overline{V_{3}} \ \overline{Y_{2}}\right) \\ ((f^{(2)}_{N_{1}N_{1}}\Phi +f^{(2)}_{N_{1}N_{2}})(W_{N_{1}0}+W_{N_{1}1})+(f^{(2)}_{N_{1}N_{2}}\Phi +f^{(2)}_{N_{2}N_{2}})(Z_{N_{2}}0+W_{N_{2}1}))\vert V_{1}\vert ^{2}\\ +\left[ (f^{(2)}_{N_{1}N_{1}}\Phi {+}f^{(2)}_{N_{1}N_{2}})(W_{N_{1}0}{+}W_{N_{1}2}){+}(f^{(2)}_{N_{1}N_{2}}\Phi {+}f^{(2)}_{N_{2}N_{2}})(W_{N_{2}0}{+}W_{N_{2}2})(\vert V_{2}\vert ^{2}{+}\vert V_{3}\vert ^{2})\right] V_{1}{+}f^{(1)}_{20}\left( \overline{V_{2}} \ \overline{Y_{3}}{+}\overline{V_{3}} \ \overline{Y_{2}}\right) \end{array} \right) \nonumber \\&-\left( \begin{array}{c} \left( \vert V_{1}\vert ^{2}+\vert V_{2}\vert ^{2}+\vert V_{3}\vert ^{2}\right) \left( f^{(1)}_{N_{1}N_{1}N_{1}}\Phi ^{3}+3f^{(1)}_{N_{1}N_{2}N_{2}}\Phi +f^{(1)}_{N_{2}N_{2}N_{2}}\right) \\ \left( \vert V_{1}\vert ^{2}+\vert V_{2}\vert ^{2}+\vert V_{3}\vert ^{2}\right) \left( f^{(2)}_{N_{1}N_{1}N_{1}}\Phi ^{3}+3f^{(2)}_{N_{1}N_{2}N_{2}}\Phi +f^{(2)}_{N_{2}N_{2}N_{2}}\right) . \end{array} \right) \end{aligned}$$
(A11)

Similarly, from the permutation of the parameters of V and Y, we can obtain the other coefficients \((G_{N_{1}}^{2},G_{N_{2}}^{2})^\mathrm{T}\) and \((G_{N_{1}}^{3},G_{N_{2}}^{32})^\mathrm{T}\). Now, by using Fredholm solvability condition

$$\begin{aligned} (1,\chi )\left( \begin{array}{c} G^{i}_{N_{1}}\\ G^{i}_{N_{2}} \end{array} \right) =0,\quad i=1,2,3, \end{aligned}$$

it follows that

$$\begin{aligned} \left\{ \begin{array}{lcccc} (\Phi +\chi )\left( \dfrac{\partial V_{1}}{\partial t_{2}}+\dfrac{\partial Y_{1}}{\partial t_{1}}\right) =-n^{2}_{T}\Phi \chi \left( \delta ^{1}_{21}Y_{1}+\delta ^{2}_{21}V_{1}\right) ,\\ \qquad \qquad \qquad \qquad \quad \ \ \ +\Lambda _{1}\left( \overline{V_{2}} \ \overline{Y_{3}}+\overline{V_{3}} \ \overline{Y_{2}}\right) +\left( G_{1}\vert V_{1} \vert ^{2}+G_{2}\left( \vert V_{2} \vert ^{2}+\vert V_{3} \vert ^{2}\right) \right) V_{1},\\ (\Phi +\chi )\left( \dfrac{\partial V_{2}}{\partial t_{2}}+\dfrac{\partial Y_{2}}{\partial t_{1}}\right) =-n^{2}_{T}\Phi \chi \left( \delta ^{1}_{21}Y_{2}+\delta ^{2}_{21}V_{2}\right) ,\\ \qquad \qquad \qquad \qquad \quad \ \ \ +\Lambda _{1}\left( \overline{V_{3}} \ \overline{Y_{1}}+\overline{V_{1}} \ \overline{Y_{3}}\right) +\left( G_{1}\vert V_{2} \vert ^{2}+G_{2}\left( \vert V_{1} \vert ^{2}+\vert V_{3} \vert ^{2}\right) \right) V_{2}, \\ (\Phi +\chi )\left( \dfrac{\partial V_{3}}{\partial t_{2}}+\dfrac{\partial Y_{3}}{\partial t_{1}}\right) =-n^{2}_{T}\Phi \chi \left( \delta ^{1}_{21}Y_{3}+\delta ^{2}_{21}V_{3}\right) ,\\ \qquad \qquad \qquad \qquad \quad \ \ \ +\Lambda _{1}\left( \overline{V_{1}} \ \overline{Y_{2}}+\overline{V_{2}} \ \overline{Y_{1}}\right) +\left( G_{1}\vert V_{3} \vert ^{2}+G_{2}\left( \vert V_{1} \vert ^{2}+\vert V_{2} \vert ^{2}\right) \right) V_{3} \end{array} \right. \end{aligned}$$
(A12)

with

$$\begin{aligned} \begin{array}{lcccc} \Lambda _{1}=f_{20}^{(1)}+\chi f_{20}^{(2)},\\ G_{1}=-\left( f_{N_{1}N_{1}}^{(1)}\Phi +f_{N_{1}N_{2}}^{(1)}+\chi \left( f_{N_{1}N_{1}}^{(2)}\Phi +f_{N_{1}N_{2}}^{(2)}\right) \right) \left( W_{N_{1}0}+W_{N_{1}1}\right) ,\\ \qquad \ -\left( f_{N_{1}N_{2}}^{(1)}\Phi +f_{N_{2}N_{2}}^{(1)}+\chi \left( f_{N_{1}N_{2}}^{(2)}\Phi +f_{N_{2}N_{2}}^{(2)}\right) \right) \left( W_{N_{2}0}+W_{N_{2}1}\right) -f_{30}^{(1)}-\chi f_{30}^{(2)},\\ G_{2}=-\left( f_{N_{1}N_{1}}^{(1)}\Phi +f_{N_{1}N_{2}}^{(1)}+\chi \left( f_{N_{1}N_{1}}^{(2)}\Phi +f_{N_{1}N_{2}}^{(2)}\right) \right) \left( W_{N_{1}0}+W_{N_{1}1}\right) , \\ \qquad \ -\left( f_{N_{1}N_{2}}^{(1)}\Phi +f_{N_{2}N_{2}}^{(1)}+\chi \left( f_{N_{1}N_{2}}^{(2)}\Phi +f_{N_{2}N_{2}}^{(2)}\right) \right) \left( W_{N_{2}0}+W_{N_{2}1}\right) -f_{30}^{(1)}-\chi f_{30}^{(2)},\\ f_{30}^{(1)}=f_{N_{1}N_{1}N_{1}}^{(1)}\Phi ^{3}+3f_{N_{1}N_{1}N_{2}}^{(1)}\Phi ^{2}+3f_{N_{1}N_{2}N_{2}}^{(1)}\Phi +f_{N_{2}N_{2}N_{2}}^{(1)},\\ f_{30}^{(2)}=f_{N_{1}N_{1}N_{1}}^{(2)}\Phi ^{3}+3f_{N_{1}N_{1}N_{2}}^{(2)}\Phi ^{2}+3f_{N_{1}N_{2}N_{2}}^{(2)}\Phi +f_{N_{2}N_{2}N_{2}}^{(2)}. \end{array} \end{aligned}$$
(A13)

The amplitude \(M_{i}\) can be widened as

$$\begin{aligned} M_{i}=\epsilon V_{i}+\epsilon ^{2}Y_{i}+O(\epsilon ^{2}). \end{aligned}$$

Combining the above equation with (3.9), we obtain the following amplitude equation

$$\begin{aligned} \left\{ \begin{array}{lccc} \tau _{0}\dfrac{\partial M_{1}}{\partial t}=\mu M_{1}+\Lambda \overline{M_{2}} \ \overline{M_{3}}-\left( \kappa _{1}\vert M_{1} \vert ^{2}+\kappa _{2}\vert M_{2} \vert ^{2}+\vert M_{3} \vert ^{2}\right) M_{1},\\ \tau _{0}\dfrac{\partial M_{2}}{\partial t}=\mu M_{2}+\Lambda \overline{M_{1}} \ \overline{M_{3}}-\left( \kappa _{1}\vert M_{2} \vert ^{2}+\kappa _{2}\vert M_{3} \vert ^{2}+\vert M_{1} \vert ^{2}\right) M_{2}, \\ \tau _{0}\dfrac{\partial M_{3}}{\partial t}=\mu M_{3}+\Lambda \overline{M_{1}} \ \overline{M_{2}}-\left( \kappa _{1}\vert M_{2} \vert ^{2}+\kappa _{2}\vert M_{3} \vert ^{2}+\vert M_{1} \vert ^{2}\right) M_{3}, \end{array} \right. \end{aligned}$$
(A14)

where

$$\begin{aligned} \tau _{0}=-\dfrac{(\Phi +\chi )}{n^{2}_{T}\Phi \chi \delta _{21}^\mathrm{T}},\quad \mu =\dfrac{\delta _{21}-\delta _{21}^\mathrm{T}}{\delta _{21}^\mathrm{T}},\quad \Lambda =-\dfrac{\Lambda _{1}}{n^{2}_{T}\Phi \chi \delta _{21}^\mathrm{T}},\\\quad \kappa _{1}=-\dfrac{G_{1}}{n^{2}_{T}\Phi \chi \delta _{21}^\mathrm{T}},\quad \kappa _{2}=-\dfrac{G_{2}}{n^{2}_{T}\Phi \chi \delta _{21}^\mathrm{T}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souna, F., Djilali, S. & Lakmeche, A. Spatiotemporal behavior in a predator–prey model with herd behavior and cross-diffusion and fear effect. Eur. Phys. J. Plus 136, 474 (2021). https://doi.org/10.1140/epjp/s13360-021-01489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01489-7