Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Log in

RGS16 Is a Marker for Prognosis in Colorectal Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The RGS family, comprising 22 homologues of proteins, plays a role in cellular proliferation, differentiation, membrane trafficking, and embryonic development through the involvement of the mitogen-activated protein kinase signaling pathway.

Methods

In order to demonstrate the importance of RGS16 expression for the prediction of prognosis of colorectal cancer (CRC), we analyzed RGS16 gene expression in 22 human gastrointestinal cell lines and 124 paired cases of CRC and noncancerous regions.

Results

RGS16 was expressed in 17 human gastrointestinal cancer cell lines examined in this study. RGS16 expression was higher in colorectal cancer tissue than in corresponding normal tissue (P < 0.001) in messenger RNA (mRNA) and protein levels. Patients in the RGS16 high-expression group showed a poorer overall survival rate than those in the low-expression group (P < 0.001), indicating that high RGS16 expression was an independent prognostic factor.

Conclusion

The present study suggests that RGS16 is useful as a predictive marker for patient prognosis of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from £29.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kohno SI, Luo C, Nawa A, Fujimoto Y, Watanabe D, Goshima F, et al. Oncolytic virotherapy with an HSV amplicon vector expressing granulocyte-macrophage colony-stimulating factor using the replication-competent HSV type 1 mutant HF10 as a helper virus. Cancer Gene Ther. 2007;14:918–26.

    Article  CAS  PubMed  Google Scholar 

  2. Hermsen M, Postma C, Baak J, Weiss M, Rapallo A, Sciutto A, et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology. 2002;123:1109–19.

    Article  CAS  PubMed  Google Scholar 

  3. Leslie A, Pratt NR, Gillespie K, Sales M, Kernohan NM, Smith G, et al. Mutations of APC, K-ras, and p53 are associated with specific chromosomal aberrations in colorectal adenocarcinomas. Cancer Res. 2003;63:4656–61.

    CAS  PubMed  Google Scholar 

  4. Tsarouha H, Pandis N, Bardi G, Teixeira MR, Andersen JA, Heim S. Karyotypic evolution in breast carcinomas with i(1)(q10) and der(1;16)(q10;p10) as the primary chromosome abnormality. Cancer Genet Cytogenet. 1999;113:156–61.

    Article  CAS  PubMed  Google Scholar 

  5. Orsetti B, Nugoli M, Cervera N, Lasorsa L, Chuchana P, Rouge C. Genetic profiling of chromosome 1 in breast cancer: mapping of regions of gains and losses and identification of candidate genes on 1q. Br J Cancer. 2006;95:1439–47.

    Article  CAS  PubMed  Google Scholar 

  6. Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, Toedt G. et al. High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin Cancer Res. 2006;12:345–52.

    Article  CAS  PubMed  Google Scholar 

  7. Wiechec E, Overgaard J, Hansen LL. A fragile site within the HPC1 region at 1q25.3 affecting RGS16, RGSL1, and RGSL2 in human breast carcinomas. Genes Chromosomes Cancer. 2008;47:766–80.

    Article  CAS  PubMed  Google Scholar 

  8. Tomlinson GE, Douglass EC, Pollock BH, Finegold MJ, Schneider NR. Cytogenetic evaluation of a large series of hepatoblastomas: numerical abnormalities with recurring aberrations involving 1q12-q21. Genes Chromosomes Cancer. 2005;44:177–84.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson FH, Emerson J, Olson S, Weinstein R, Leavitt SA, Leong SP, et al. Cytogenetics of 158 patients with regional or disseminated melanoma. Subset analysis of near-diploid and simple karyotypes. Cancer Genet Cytogenet. 1995;83:93–104.

    Article  CAS  PubMed  Google Scholar 

  10. Kullendorff CM, Soller M, Wiebe T, Mertens F. Cytogenetic findings and clinical course in a consecutive series of Wilms tumors. Cancer Genet Cytogenet. 2003;140:82–7.

    Article  CAS  PubMed  Google Scholar 

  11. Pandis N, Jin Y, Gorunova L, Petersson C, Bardi G, Idvall I, et al. Chromosome analysis of 97 primary breast carcinomas: identification of eight karyotypic subgroups. Genes Chromosomes Cancer. 1995;12:173–85.

    Article  CAS  PubMed  Google Scholar 

  12. Parada LA, Hallen M, Tranberg KG, Hagerstrand I, Bondeson L, Mitelman F, et al. Frequent rearrangements of chromosomes 1, 7, and 8 in primary liver cancer. Genes Chromosomes Cancer. 1998;23:26–35.

    Article  CAS  PubMed  Google Scholar 

  13. Gorunova L, Hoglund M, Andren-Sandberg A, Dawiskiba S, Jin Y, Mitelman F, et al. Cytogenetic analysis of pancreatic carcinomas: intratumor heterogeneity and nonrandom pattern of chromosome aberrations. Genes Chromosomes Cancer. 1998;23:81–99.

    Article  CAS  PubMed  Google Scholar 

  14. Leung TH, Wong N, Lai PB, Chan A, To KF, Liew CT, et al. Identification of four distinct regions of allelic imbalances on chromosome 1 by the combined comparative genomic hybridization and microsatellite analysis on hepatocellular carcinoma. Mod Pathol. 2002;15:1213–20.

    Article  PubMed  Google Scholar 

  15. Davidsson J, Andersson A, Paulsson K, Heidenblad M, Isaksson M, Borg A, et al. Tiling resolution array comparative genomic hybridization, expression and methylation analyses of dup(1q) in Burkitt lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal clustered near-centromeric breakpoints and overexpression of genes in 1q22-32.3. Hum Mol Genet. 2007;16:2215–25.

    Article  CAS  PubMed  Google Scholar 

  16. Alers JC, Rochat J, Krijtenburg PJ, Hop WC, Kranse R, Rosenberg C, et al. Identification of genetic markers for prostatic cancer progression. Lab Invest. 2000;80:931–42.

    CAS  PubMed  Google Scholar 

  17. Nishimura T, Nishida N, Itoh T, Komeda T, Fukuda Y, Ikai I, et al. Discrete breakpoint mapping and shortest region of overlap of chromosome arm 1q gain and 1p loss in human hepatocellular carcinoma detected by semiquantitative microsatellite analysis. Genes Chromosomes Cancer. 2005;42:34–43.

    Article  CAS  PubMed  Google Scholar 

  18. Sobin LH, Witedkind CH. UICC TNM classification of malignant tumors. 5th ed. New York: Wiley-Liss; 1997. p. 66–9.

    Google Scholar 

  19. Mimori K, Mori M, Shiraishi T, Fujie T, Baba K, Haraguchi M, et al. Clinical significance of tissue inhibitor of metalloproteinase expression in gastric carcinoma. Br J Cancer. 1997;76:531–6.

    CAS  PubMed  Google Scholar 

  20. Mori M, Staniunas RJ, Barnard GF, Jessup JM, Steele GD Jr, Chen LB. The significance of carbonic anhydrase expression in human colorectal cancer. Gastroenterology. 1993;105:820–6.

    CAS  PubMed  Google Scholar 

  21. Chen C, Zheng B, Han J, Lin SC. Characterization of a novel mammalian RGS protein that binds to Galpha proteins and inhibits pheromone signaling in yeast. J Biol Chem. 1997;272:8679–85.

    Article  CAS  PubMed  Google Scholar 

  22. Chen CK, Wieland T, Simon MI. RGS-r, a retinal specific RGS protein, binds an intermediate conformation of transducin and enhances recycling. Proc Natl Acad Sci USA. 1996;93:12885–9.

    Article  CAS  PubMed  Google Scholar 

  23. Snow BE, Antonio L, Suggs S, Siderovski DP. Cloning of a retinally abundant regulator of G-protein signaling (RGS-r/RGS16): genomic structure and chromosomal localization of the human gene. Gene. 1998;206:247–53.

    Article  CAS  PubMed  Google Scholar 

  24. Mittmann C, Chung CH, Hoppner G, Michalek C, Nose M, Schuler C, et al. Expression of ten RGS proteins in human myocardium: functional characterization of an upregulation of RGS4 in heart failure. Cardiovasc Res. 2002;55:778–86.

    Article  CAS  PubMed  Google Scholar 

  25. Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem. 2000;275:39090–5.

    Article  CAS  PubMed  Google Scholar 

  26. Derrien A, Zheng B, Osterhout JL, Ma YC, Milligan G, Farquhar MG, et al. Src-mediated RGS16 tyrosine phosphorylation promotes RGS16 stability. J Biol Chem. 2003;278:16107–16.

    Article  CAS  PubMed  Google Scholar 

  27. Andre T, Quinaux E, Louvet C, Colin P, Gamelin E, Bouche O, et al. Phase III study comparing a semimonthly with a monthly regimen of fluorouracil and leucovorin as adjuvant treatment for stage II and III colon cancer patients: final results of GERCOR C96.1. J Clin Oncol. 2007;25:3732–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wolpin BM, Mayer RJ. Systemic treatment of colorectal cancer. Gastroenterology. 2008;134:1296–310.

    Article  CAS  PubMed  Google Scholar 

  29. Kornmann M, Formentini A, Ette C, Henne-Bruns D, Kron M, Sander S, et al. Prognostic factors influencing the survival of patients with colon cancer receiving adjuvant 5-FU treatment. Eur J Surg Oncol. 2008;34:1316–21.

    CAS  PubMed  Google Scholar 

  30. Bathe OF, Dowden S, Sutherland F, Dixon E, Butts C, Bigam D, et al. Phase II study of neoadjuvant 5-FU + leucovorin + CPT-11 in patients with resectable liver metastases from colorectal adenocarcinoma. BMC Cancer. 2004;4:32.

    Article  PubMed  Google Scholar 

  31. Lacy AM, Garcia-Valdecasas JC, Delgado S, Castells A, Taura P, Pique JM, et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet. 2002;359:2224–9.

    Article  PubMed  Google Scholar 

  32. Weeks JC, Nelson H, Gelber S, Sargent D, Schroeder G. Short-term quality-of-life outcomes following laparoscopic-assisted colectomy vs open colectomy for colon cancer: a randomized trial. JAMA. 2002;287:321–8.

    Article  PubMed  Google Scholar 

  33. Clinical Outcomes of Surgical Therapy Study Group. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med. 2004;350:2050–9.

    Google Scholar 

  34. Jayne DG, Guillou PJ, Thorpe H, Quirke P, Copeland J, Smith AM, et al. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. J Clin Oncol. 2007;25:3061–8.

    Article  PubMed  Google Scholar 

  35. Liu T, Bohlken A, Kuljaca S, Lee M, Nguyen T, Smith S, et al. The retinoid anticancer signal: mechanisms of target gene regulation. Br J Cancer. 2005;93:310–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem. 2000;69:795–827.

    Article  CAS  PubMed  Google Scholar 

  37. Hu Y, Xing J, Chen L, Guo X, Du Y, Zhao C, et al. RGS22, A Novel Testis-Specific Regulator of G-protein Signaling Involved in Human and Mouse Spermiogenesis along with GNA12/13 Subunits. Biol Reprod. 2008;79:1021–9.

    Article  CAS  PubMed  Google Scholar 

  38. Dohlman HG, Thorner J. RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem. 1997;272:3871–4.

    Article  CAS  PubMed  Google Scholar 

  39. Berman DM, Gilman AG. Mammalian RGS proteins: barbarians at the gate. J Biol Chem. 1998;273:1269–72.

    Article  CAS  PubMed  Google Scholar 

  40. Cavalli A, Druey KM, Milligan G. The regulator of G protein signaling RGS4 selectively enhances alpha 2A-adreoreceptor stimulation of the GTPase activity of Go1alpha and Gi2alpha. J Biol Chem. 2000;275:23693–9.

    Article  CAS  PubMed  Google Scholar 

  41. Druey KM, Blumer KJ, Kang VH, Kehrl JH. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature. 1996;379:742–6.

    Article  CAS  PubMed  Google Scholar 

  42. De Vries L, Gist Farquhar M. RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell Biol. 1999;9:138–44.

    Article  PubMed  Google Scholar 

  43. Hepler JR. Emerging roles for RGS proteins in cell signalling. Trends Pharmacol Sci. 1999;20:376–82.

    Article  CAS  PubMed  Google Scholar 

  44. Chen C, Wang H, Fong CW, Lin SC. Multiple phosphorylation sites in RGS16 differentially modulate its GAP activity. FEBS Lett. 2001;504:16–22.

    Article  CAS  PubMed  Google Scholar 

  45. Buckbinder L, Velasco-Miguel S, Chen Y, Xu N, Talbott R, Gelbert L, et al. The p53 tumor suppressor targets a novel regulator of G protein signaling. Proc Natl Acad Sci USA. 1997;94:7868–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mori MD, PhD, FACS.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Supplementary material 2 (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyoshi, N., Ishii, H., Sekimoto, M. et al. RGS16 Is a Marker for Prognosis in Colorectal Cancer. Ann Surg Oncol 16, 3507–3514 (2009). https://doi.org/10.1245/s10434-009-0690-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1245/s10434-009-0690-3

Keywords