Thanks to visit codestin.com
Credit goes to link.springer.com

Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Behavior Research Methods, Instruments, & Computers
  3. Article

Algorithms for randomness in the behavioral sciences: A tutorial

  • Computer Technology
  • Published: March 1991
  • Volume 23, pages 45–60, (1991)
  • Cite this article
Download PDF
Behavior Research Methods, Instruments, & Computers Aims and scope Submit manuscript
Algorithms for randomness in the behavioral sciences: A tutorial
Download PDF
  • Marc Brysbaert1 
  • 1023 Accesses

  • 43 Citations

  • Explore all metrics

Abstract

Simulations and experiments frequently demand the generation of random numbers that have specific distributions. This article describes which distributions should be used for. the most common problems and gives algorithms to generate the numbers. It is also shown that a commonly used permutation algorithm (Nilsson, 1978) is deficient.

Article PDF

Download to read the full article text

Similar content being viewed by others

Simulation of the Gaussian Distribution of a Random Variable Using a Standard Programm Rnd()

Chapter © 2022

Exact Permutation/Randomization Tests Algorithms

Article 06 October 2020

A conceptual investigation of the effect of random numbers over the performance of metaheuristic algorithms

Article 31 March 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algorithms
  • Behavioral Methods
  • Computational Social Sciences
  • Discrete Mathematics in Computer Science
  • Probability and Statistics in Computer Science
  • Statistics and Computing
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Afflerbach, L. (1985). The pseudo-random number generators in Commodore and Apple microcomputers.Statistische Hefte,26, 321–333.

    Article  Google Scholar 

  • Aldridge, J. W. (1987). Cautions regarding random number generation on the Apple II.Behavior Research Methods, Instruments, & Computers,19, 397–399.

    Google Scholar 

  • Atkinson, A. C. (1980). Tests of pseudo-random numbers.Applied Statistics,29, 164–171.

    Article  Google Scholar 

  • Best, D. J. (1979). Some easily programmed pseudo-random normal generators.Australian Computer Journal,11, 60–62.

    Google Scholar 

  • Bissell, A. F. (1986). Ordered random selection without replacement.Applied Statistics,35, 73–75.

    Article  Google Scholar 

  • Box, G. E. P., &Jenkins, G. M. (1976).Time series analysis: Fore-casting and control. San Francisco’. Holden-Day.

    Google Scholar 

  • Box, G. E. P., &Muller, M. E. (1958). A note on the generation of random normal deviates.Annals of Mathematical Statistics,29, 610–611.

    Article  Google Scholar 

  • Bradley, D. R. (1988).DATASIM. Lewiston, ME: Desktop Press.

    Google Scholar 

  • Bradley, D. R., Senko, M. W., &Stewart, F. A. (1990). Statistical simulation on microcomputers.Behavior Research Methods, Instruments, & Computers,22, 236–246.

    Google Scholar 

  • Brophy, A. L. (1985). Approximation of the inverse normal distribution function.Behavior Research Methods, Instruments, & Computers,17, 415–417.

    Article  Google Scholar 

  • Dreger, R. M. (1989). A BASIC program for the Shell-Metzner sort algorithm.Educational & Psychological Measurement,49, 619–622.

    Article  Google Scholar 

  • Dudewicz, E. 3., &Ralley, T. G. (1981).The handbook of random number generation and testing with TESTRAND computer code. Columbus, OH: American Sciences Press.

    Google Scholar 

  • Dwyer, T., &Critchfield, M. (1978).BASIC and the Personalcomputer. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Edgell, S. E. (1979). A statistical check of the DECsystem-10 FORTRAN pseudorandom number generator.Behavior Research Methods & Instrumentation,11, 529–530.

    Google Scholar 

  • Ellis, J. K. (1985). Distribution counting as a method for sorting test scores.Behavior Research Methods, Instruments, & Computers,17, 419–420.

    Article  Google Scholar 

  • Fishman, G. S., &Moore, L. R., Ill (1986). An exhaustive analysis of multiplicative congruential random number generators with modulus 231 - 1.SIAM Journal on Scientific & Statistical Computing,7, 24–45.

    Article  Google Scholar 

  • Green, B. F. (1963).Digital computers in research: An introduction for behavioral and social scientists. New York: McGraw-Hill.

    Google Scholar 

  • Gruenberger, F., &Jaffray, G. (1965).Problems for computer solution. New York: Wiley.

    Google Scholar 

  • Hays, W. L. (1988).Statistics. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Kennedy, W. J., &Gentle, J. E. (1980).Statistical computing. New York: Marcel Dekker.

    Google Scholar 

  • Knuth, D. E. (1973).The art of computer programming: Vol. 3. Sorting and searching. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Knuth, D. E. (1981).The art of computer programming: Vol. 2. Semi-numerical algorithms. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Kraner, H. C, Mohanty, S. G., &Lyons, J. C. (1980). Critical values of the Kolmogorov-Smirnoy one-sample test.Psychological Bulletin,88, 498–501.

    Article  Google Scholar 

  • Lordahl, D. S. (1988). Repairing the Microsoft BASIC RND function.Behavior Research Methods, Instruments, & Computers,20, 221–223.

    Google Scholar 

  • Luce, R. D. (1986).Response times. New York: Oxford University Press.

    Google Scholar 

  • MacLaren, N. M. (1989). The generation of multiple independent sequences of pseudorandom numbers.Applied Statistics,38, 351–359.

    Article  Google Scholar 

  • McLeod, A. I. (1985). A remark on Algorithm AS183: An efficient and portable pseudo-random number generator.Applied Statistics,34, 198–200.

    Article  Google Scholar 

  • Malmi, R. A. (1986). Intuitive covariation estimation.Memory & Cognition,14, 501–508.

    Google Scholar 

  • Marsaglia, G. (1962). Random variables and computers. In J. Kozesnik (Ed.),Information theory, statistical decision functions, random processes: Transactions of the Third Prague Conference (pp. 499–510). Prague: Czechoslovak Academy of Sciences.

    Google Scholar 

  • Marsagua, G., &Bray, T. A. (1964). A convenient method for generating normal variables.SIAM Review,6, 260–264.

    Article  Google Scholar 

  • Modianos, D. T., Scott, R. C., &Cornwell, L. W. (1987). Testing intrinsic random-number generators.Byte,12, 175–178.

    Google Scholar 

  • Moses, L. E., &Oakford, R. V. (1963).Tables of random permutations. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Nance, R. E., &Overstreet, C. L. (1972). A bibliography on random number generators.Computer Review,13, 495–508.

    Google Scholar 

  • Nilsson, T. H. (1978). Randomization without replacement using replacement without losing your place.Behavior Research Methods & Instrumentation,10, 419.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., &Vetterling, W. T. (1986).Numerical recipes: The art of scientific computing. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Ripley, B. D. (1983). Computer generation of random variables: A tutorial.International Statistical Review,51, 301–319.

    Article  Google Scholar 

  • Ripley, B. D. (1987).Stochastic simulation. New York: Wiley.

    Book  Google Scholar 

  • Sahai, H. (1979). A supplement to Sowey’s bibliography on random number generation and related topics.Journal of Statistical Computation & Simulation,10, 31–52.

    Article  Google Scholar 

  • Sowey, E. R. (1972). A chronological and classified bibliography on random number generation and testing.International Statistical Review,40, 355–371.

    Google Scholar 

  • Sowey, E. R. (1978). A second classified bibliography on random number generation and testing.International Statistical Review,46, 355–371.

    Google Scholar 

  • Sowey, E. R. (1986). A third classified bibliography on random number generation and testing.Journal of the Royal Statistical Society,149A, 83–107.

    Google Scholar 

  • Strube, M. J. (1983). Tests of randomness for pseudorandom number generators.Behavior Research Methods & Instrumentation,15, 536–537.

    Google Scholar 

  • von Neumann, J. (1951). Various techniques in connection with random digits.NBS Applied Mathematics Series,12, 36–38.

    Google Scholar 

  • Wichmann, B. A., &Hill, J. D. (1982). Algorithm AS183: An efficient and portable pseudo random number generator.Applied Statistics,31, 188–190.

    Article  Google Scholar 

  • Wichmann, B. A., &Hill, J. D. (1984). An efficient and portable pseudo random number generator: Correction.Applied Statistics,33, 123.

    Article  Google Scholar 

  • Zeisel, H. (1986). A remark on Algorithm AS183: An efficient and portable pseudo-random number generator.Applied Statistics,35, 89.

    Google Scholar 

  • Zelen, M., &Severo, N. C. (1964). Probability functions. In M. Abramowitz & I. A. Stegun (Eds.),Handbook of mathematical functions (pp. 925–995). New York: Dover.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Leuven, B-3000, Leuven, Belgium

    Marc Brysbaert

Authors
  1. Marc Brysbaert
    View author publications

    Search author on:PubMed Google Scholar

Additional information

The author wishes to thank G. d’Ydewalle, as well as the editor and three reviewers, for helpful comments on earlier drafts of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brysbaert, M. Algorithms for randomness in the behavioral sciences: A tutorial. Behavior Research Methods, Instruments, & Computers 23, 45–60 (1991). https://doi.org/10.3758/BF03203334

Download citation

  • Received: 04 December 1989

  • Accepted: 02 November 1990

  • Issue date: March 1991

  • DOI: https://doi.org/10.3758/BF03203334

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Random Number
  • Random Number Generator
  • Geometric Distribution
  • Congruential Generator
  • Permute Array
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

132.145.61.108

Not affiliated

Springer Nature

© 2025 Springer Nature