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Mutations in human copper-zinc superoxide dismutase (SOD1)

cause an inherited form of amyotrophic lateral sclerosis (ALS,

Lou Gehrig’s disease, motor neuron disease). Insoluble forms of

mutant SOD1 accumulate in neural tissues of human ALS

patients and in spinal cords of transgenic mice expressing these

polypeptides, suggesting that SOD1-linked ALS is a protein

misfolding disorder. Understanding the molecular basis for how

the pathogenic mutations give rise to SOD1 folding intermedi-

ates, which may themselves be toxic, is therefore of keen

interest. A critical step on the SOD1 folding pathway occurs

when the copper chaperone for SOD1 (CCS) modifies the

nascent SOD1 polypeptide by inserting the catalytic copper

cofactor and oxidizing its intrasubunit disulfide bond. Recent

studies reveal that pathogenic SOD1 proteins coming from

cultured cells and from the spinal cords of transgenic mice tend

to be metal-deficient and/or lacking the disulfide bond, raising

the possibility that the disease-causing mutations may enhance

levels of SOD1-folding intermediates by preventing or hindering

CCS-mediated SOD1 maturation. This mini-review explores this

hypothesis by highlighting the structural and biophysical

properties of the pathogenic SOD1 mutants in the context of

what is currently known about CCS structure and action. Other

hypotheses as to the nature of toxicity inherent in pathogenic

SOD1 proteins are not covered. Exp Biol Med 234:1140–1154,

2009
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SOD1 and Familial ALS

ALS, the most frequently occurring adult motor neuron

disease, is a fatal, late-onset, paralytic disorder first

described in the late 1800s by the French neurologist

Jean-Martin Charcot (1). The hallmarks of ALS are

spasticity, hyperreflexia, muscle atrophy, and paralysis (2).

Death usually occurs in within five years of symptom onset,

typically from respiratory failure. The majority of ALS

cases are termed ‘‘sporadic’’ (sALS), meaning that the

afflicted individual has no family history, while the

remaining cases are termed ‘‘familial’’ (fALS), meaning

that a genetic lesion is passed from generation to generation

(3, 4).

In 1993, eleven families with histories of ALS were

found to possess dominant mutations in the gene encoding

the cytosolic antioxidant enzyme copper-zinc superoxide

dismutase (SOD1) (5, 6). These findings generated

enormous excitement in the ALS research community
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because the structure and action of SOD1 were fairly well

characterized, and it was hoped that understanding the

molecular basis for how the pathogenic SOD1 mutations

exert their toxic effects in motor neurons would illuminate

novel avenues of therapeutic intervention. In addition,

because sALS and fALS are similar clinically, it is possible

that the underlying molecular causes for the two forms of

the disease could be related and therapeutics effective for

SOD1-linked ALS might prove effective for the more

prevalent sporadic forms of the disease. Today, nearly 16

years after lesions in the gene encoding SOD1 were first

linked to fALS, the number of distinct ALS-SOD1

mutations published in the literature has risen to ;100

(Table 1) (7, 8). However, an effective treatment has still not

yet been identified and acquiring an understanding of the

molecular basis for SOD1-linked ALS has proven elusive.

Pathogenic SOD1 Proteins Have Acquired a Toxic
Property

SOD1 detoxifies reactive superoxide anion, a normal

byproduct of cellular respiration, to molecular oxygen and

water [2O2
–þ 2Hþ! H2O2þO2] (9). In mammals, SOD1

is ubiquitously expressed in all tissues and within cells it is

primarily localized to the cytosol, although lesser amounts

are found in the nucleus, peroxisomes, and mitochondria

(10). The enzyme is particularly plentiful in the spinal cord

and brain, where it has been estimated to comprise between

0.1% and 2.0% of the detergent-soluble protein (11, 12).

This abundance likely reflects the copious superoxide

generated by these highly respiring tissues. The fundamental

role of SOD1 as an antioxidant protein, combined with its

abundance in neural tissue, suggested an initial hypothesis

that the pathogenic SOD1 mutations might result in an

enzyme that is unable to detoxify reactive oxygen species.

Over time, this loss of enzymatic function could lead to

oxidative damage and death of neural cells. However, mice

lacking SOD1 do not develop motor neuron disease (13)

and transgenic mice expressing human fALS SOD1 mutants

in addition to their own endogenous SOD1 develop

paralytic symptoms strikingly similar to those observed in

human patients (14–16). Together, these observations imply

that pathogenic SOD1 molecules act through the gain of a

cytotoxic property and not a loss of function (see below).

Genetics and Models of SOD1-Linked fALS

The human SOD1 gene, located on chromosome 21

(17), is comprised of 5 exons that are spliced to produce

mRNA that, when translated, produces a single species of

SOD1 protein. In other words, there is no evidence of

alternative splicing to produce functionally distinct SOD1

isoforms. The mature mRNA codes for a protein of 154

amino acids, which is post-translationally modified by

removal of the initiating methionine, followed by N-

terminal acetylation. The mature protein consists of 153

amino acids, and the numbering system used to identify

sites of mutation is based on the amino acid sequence of the

mature polypeptide. Missense mutations that cause fALS

have been documented at 68 positions in the SOD1 protein

(Table 1 and Fig. 1). With more than 100 missense

mutations at these 68 positions, it is obvious that multiple

amino acid substitutions at a given position can cause

disease (e.g., Gly93 to Ala, Cys, Asp, Arg, Ser, or Val). In

initial studies of SOD1-linked fALS (5, 6), the evidence

indicated that the disease was completely penetrant.

However, as the identification of new families led to

additional mutations, it has become clear that some are not

(see http://alsod.iop.kcl.as.uk), meaning that a given indi-

vidual inheriting a mutant SOD1 allele may live a normal

lifespan, with the disease appearing in the next generation.

The most common mutation in North America is a

substitution of Val for Ala at position 4 (A4V); this

mutation appears to be fully penetrant, producing a disease

of relatively short duration.

Across species, the amino acid sequence of SOD1 is

highly conserved; 112 of 153 residues are conserved in

mammals, with 70 invariant across eukaryotic phyla (18).

Sixty-one of the pathogenic mutations occur at residues

conserved in mammals, with 49 occurring at positions that

are extremely conserved (18). To our knowledge, there are

no reports in the veterinary literature of spontaneous

mutations in SOD1 that are associated with a neuromuscular

disorder in domesticated or captive animals. However, it has

been demonstrated that transgenic over-expression of the

mouse SOD1 protein encoding a mutation associated with

human fALS (G86R) induces a neuromuscular disorder

remarkably similar to fALS (19). Apart from the exper-

imental murine models, however, SOD1-linked ALS

appears to be a uniquely human disease.

The discovery of mutations in SOD1 as a cause of ALS

provided the first opportunity to produce a genetically

faithful model of the disease. Transgenic mice that over-

express human SOD1-harboring mutations linked to fALS

develop muscle loss and paralysis characteristic of human

ALS. Almost all of the published models were built by

injecting a 12-kb fragment of human genomic DNA

containing all regulatory elements as the transgene vector

(20). Mutant human SOD1 genes that have been introduced

into mice include A4V (21), G37R (22), H46R (23), G85R

(15), G93A (16), L126Z (14, 21), L126del(stop 131) (24),

and Gins127TGGG (25). In addition to the mice, there are

two examples of transgenic rats that harbor the human gene

[H46R (26) and G93A (27)]. The mouse model most widely

used by ALS researchers is the first model that was

developed by Mark Gurney and colleagues (16). This model

expresses the fALS variant SOD1-G93A at very high levels

and has a disease onset marked by hindlimb weakness at 3–

4 months of age, with death occurring by 4–5 months of

age. In general, the phenotypic manifestation of disease in

all of the mouse and rat models is similar; limb weakness

(usually hindlimb) is the first sign, followed by generalized

weakness in all limbs and the trunk. Pathologic features of
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the disease are among the most faithful of all models of

human neurologic disease, including loss of large motor

neurons of the spinal cord, robust astrogliosis and micro-

gliosis, and inclusion pathology. Overall, it is widely

accepted that the mutant SOD1 mouse models faithfully

model human SOD1-linked fALS.

Structural Properties of SOD1

SOD1 is a 32-kDa homodimeric enzyme in which each

subunit folds as an 8-stranded Greek key b-barrel, binds one

copper and one zinc ion, and contains one intrasubunit

disulfide bond (28). Figure 1A shows the mature wild type

holoenzyme [pdb code 2C9V (29)]. Two lengthy loop

elements project from the b-barrel that are important in

metal ion binding and the formation of the active site. These

are termed the ‘‘zinc loop’’ (loop IV, residues 50–83) and

the ‘‘electrostatic loop’’ (loop VII, residues 121–142). In the

mature enzyme, the ‘‘disulfide loop,’’ a substructure of loop

IV (residues 50–62), is covalently linked to the b-barrel

through a disulfide bond between C57 and C146 [for

review, see (7)].

The pathogenic SOD1 mutations are grouped based on

their positions in the structure (Fig. 1B). ‘‘b-barrel mutants’’
are isolated from their expression systems with metal

content nearly identical to that found for the wild type

SOD1 expressed in the same systems, while ‘‘metal binding

mutants’’ tend to be deficient in copper and/or zinc (30, 31).

Three-dimensional structures are known for b-barrel

mutants A4V (32), G37R (33, 34), H43R (35), G93A

(36), and I113T (32), and these metal-replete structures

reveal only slight perturbations relative to the wild type

enzyme. Structures of the metal-binding mutants H46R (37,

Table 1. Published ALS-SOD1 Proteins

Mutations Class
Principal

references

Exon 1
11. A4!S, T, or V B 89–92
12. C6!F or G B 94, 95
13. V7!E B 97
14. L8!Q or V B 98, 99
15. G10!V B 100
16. G12!R B 105
17. V14!G or M B 107, 108
18. G16!A or S B 98, 109
19. N19!S B 98
10. F20!C B 98
11. E21!G or K B 99, 112
12. Q22!L B 98
Exon 2
13. G37!R B 6
14. L38!R or V B 6, 116
15. G41!D or S B 6
16. H43!R B 6
17. F45!C B 93
18. H46!R M 121
19. V47!F B 98
20. H48!Q or R M 98, 123
21. E49!K B 116
22. T54!R D 98
23. C57!R D 118
Exon 3
24. S59!I D 98
25. N65!S M 115
26. L67!R M 116
27. G72!C or S M 60, 127
28. D76!V or Y M 107, 129
Exon 4
29. H80!R M 130
30. L84!F or V M 127, 131
31. G85!R M 6
32. N86!D, K, or S B 118, 132, 133
33. V87!A B 98
34. T88delTAD* B 98
35. A89!T or V B 98, 135
36. D90!A or V B 136, 137
37. G93!A, C, D, R,

S, or V
B 6, 99, 114,

122, 138
Exon 4
38. A95!T B 93
39. D96!N B 96
40. V97!M B 98
41. E100!G or K B 6, 99
42. D101!G, H, N or Y B 101–104
43. I104!F B 106
44. S105!L or delSL B 98
45. L106!V B 6
46. G108!V B 110
47. D109!Y B 111
48. C111!Y B 113
49. I112!M or T B 114, 115
50. I113!F or T B 6, 98
51. G114!A B 98
52. R115!G B 117
53. T116!R B 118
54. V118!L or L ins

(stop 122)
B 98, 119, 120

Table 1. (Continued)

Mutations Class
Principal

references

Exon 5
55. D124!G or V M 98, 122
56. D125!H M 123
57. L126!S or stop or del

(stop 131)
B 62, 99, 124

58. G127ins (stop 133) B 107
59. E132ins (stop 133) B 110
60. E133del* B 122
61. S134!N M 125
62. N139!H or K B 124, 126
63. A140!G B 111
64. G141!E or stop B 98, 102
65. L144!F or S B 5, 128
66. A145!G or T B 98, 128
67. C146!R D 99
68. G147!R B 98
69. V148!G or I B 5, 106
70. I149!T B 124
71. I151!S or T B 98, 134

B, b-barrel mutants; M, metal-binding region mutants; D, disulfide
loop mutants.
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Figure 1. SOD1 structure. (A) Human Cu-Zn superoxide dismutase [pdb code 2C9V (29)]. The relationship of the two monomers is indicated.
Intrasubunit disulfide bonds are shown as orange sticks, the metal-binding loops (loop IV and VII) are shown in blue and pink, respectively.
Copper and zinc ions are shown as cyan and green spheres, respectively. (B) The spatial distribution of the known pathogenic SOD1 mutations.
A monomer of SOD1 is shown in the same orientation as the rightmost subunit in Figure 1A. The a-carbon positions of fALS mutations falling in
the b-barrel and in the metal-binding loop elements are shown as green and hot pink spheres, respectively. The a-carbon positions of
pathogenic SOD1 mutants for which there are mouse models are shown as yellow spheres.
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38), H46R/H48Q double mutant (39), G85R (40), D125H

(41), and S134N (37, 42) have also been determined, and

most of these are metal-deficient, which in turn results in

conformational disorder of the electrostatic and zinc loop

elements.

The biophysical properties of these two classes of

pathogenic SOD1 mutants are dramatically different in their

metal-free, disulfide-reduced (newly translated) forms. In

differential scanning calorimetry experiments, nascent b-

barrel mutants tend to be substantially destabilized relative

to the wild type enzyme, while newly translated metal-

binding mutants tend to retain thermal stability similar to the

wild type enzyme (43, 44). The thermal stability of newly

translated SOD1 proteins overall is significantly enhanced

via posttranslational modification to the mature holoenzyme

via the action of its copper chaperone (CCS) (45) (see

below).

The mature human SOD1 holoenzyme is a remarkably

stable dimer, retaining enzymatic activity at elevated

temperatures and in the presence of denaturing agents (46,

47). Although the stabilizing effects of metal ion binding

have long been known, recent studies have also illuminated

the importance of the intrasubunit disulfide bond to dimer

stability. The dimer interface is formed predominantly by

reciprocal interactions of the disulfide loop and b-strand 8

across the molecular two-fold axis (Fig. 1A) (48). Protein

folding (49), gel filtration (50), and analytical ultracentrifu-

gation (48) analyses have revealed that reduction of the

disulfide bond in the metal-free protein results in monomer-

ization. As can be inferred from Figure 1A, a reduced

disulfide bond will result in enhanced mobility of the

disulfide loop, weakening the interactions across the dimer

interface (51).

Soluble Oligomers and Insoluble Aggregates of
Mutant SOD1 in fALS

One of the common features of the mouse models of

SOD1-linked ALS is the accumulation of insoluble forms of

mutant protein as the disease progresses (52). These

insoluble mutant proteins are generally thought of as

aggregates [for review, see Murphy R.M., 2002 (53)] that

are composed of assemblies of protein that attain relatively

high molecular weight (examples include filamentous

aggregates as well as smaller oligomeric structures). The

mutant proteins are far more prone to form these assemblies

than is normal human SOD1 (52). Soluble higher-order

oligomers of pathogenic SOD1 have also been detected

(54), and it is generally presumed that these are on the

pathway to the formation of insoluble aggregates. Whether

it is the misfolded pathogenic SOD1 monomers, soluble

oligomers, or insoluble aggregates that are the noxious

entities in SOD1-linked ALS remains unclear. Importantly,

in tissues from diseased mice, a majority of the mutant

proteins fractionate to the soluble fraction (52), meaning

that only a portion of the total mutant SOD1 in the tissue

ends up in the insoluble aggregate.

In general, pathologic protein aggregates resist disso-

ciation in detergent, and larger oligomers can be separated

from smaller soluble species by ultracentrifugation or size

exclusion chromatography. Forms of mutant SOD1 that are

insoluble in non-ionic detergent have been detected in

multiple mouse models including mice that express the

following variants: A4V (21), G37R (52), G85R (52),

mouse G86R (55), G93A (52), L126Z (14) (Fig. 2), and

Gins127TGGG (25). Similar aggregates were found in

spinal cord tissues of an fALS patient harboring the A4V

mutation (52). Aggregation of the mutant protein does not

appear to be entirely secondary to disease processes in

tissues because high-level expression of the mutant protein

in cultured cells can produce assemblies of mutant protein

that are biochemically and biophysically similar to the

aggregates formed in tissues (52, 55).

In pathological examination of tissues from humans or

from animal models, aggregates of mutant SOD1 are

defined by the formation of macromolecular structures

termed inclusion-bodies (Fig. 2). In human disease, the

availability of autopsy cases from SOD1-linked cases has

been limited, but there are a number of case reports in the

literature. The most consistently reported pathologic

structures are hyaline or Lewy-body like inclusions that

are immunoreactive to SOD1 antibodies; mutants examined

include A4V (56, 57); H46R (58); I113T (59); G72C (60);

L126del (stop 131) (57, 61); and L126S (62). However,

there have been reports of SOD1-linked ALS cases in which

inclusion pathology was either absent or the inclusions that

were unreactive with antibodies to SOD1 (56, 63–66). In the

fALS mouse models, pathologic inclusions are not neces-

sarily prominent pathologic features (14, 16, 22, 52), but

have been observed as the major pathology of mice that

express human SOD1-G85R (15).

The biophysical mechanisms of mutant SOD1 oligo-

merization/aggregation remain unclear. A number of recent

studies provided evidence that aberrant intermolecular

disulfide bonding of mutant SOD1 (cysteines at residues

6, 57, 111, 146) either promoted aggregation and/or

stabilized aggregates generated by other mechanisms (18,

67–72). However, there have been reports of fALS

mutations at all four cysteines residues in SOD1 (Table

1); recent studies demonstrated that SOD1 mutants encod-

ing disease-linked mutations at these cysteine residues (e.g.,

C6G, C6F, C111Y, C146R) rapidly formed aggregates

when expressed in cell culture (55, 69). Moreover, Karch

and Borchelt demonstrated that experimental mutants that

lack all four cysteine residues (C6F/C57S/C111Y/C146R),

or which encode only a single cysteine at positions 6 or 111

(C6/C57S/C111Y/C146R or C6F/C57S/C111/C146R) rap-

idly aggregate when expressed in cultured cells (55). Recent

in vitro studies by Chattopadhyay and colleagues (73) have

demonstrated the aggregation of wild-type human SOD1

into amyloid-fibril–like structures via mechanisms that do
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not appear to involve intermolecular disulfide crosslinking.

Collectively, these data suggest that extensive disulfide

cross-linking is not required to either promote or stabilize

mutant SOD1 oligomerization/aggregation.

Little is known of the structures of mutant SOD1

aggregates that form in vivo. In vitro, metal-depleted mutant

forms of SOD1 can assemble into linear and helical

filamentous arrays, based on the principle that their b-sheet

edges have lost protection from the ‘‘negative design’’
inherent in the wild type enzyme (37, 74). The helical

filamentous arrays of metal-depleted pathogenic SOD1 (Fig.

3) (37) have some similarity to the ‘‘amyloid pores’’ that

have been observed in other neurodegenerative diseases in

which protein aggregation is a characteristic feature (75). In

most, but not all fALS mouse models, there is evidence of

the accumulation of amyloid-like material; thioflavin-S

positive structures (14, 52). As mentioned above, recent

studies by Chattopadhyay and colleagues generated amy-

loid-like fibrils of wild-type human SOD1 in vitro. Overall,

these studies indicate that SOD1 possesses structural

features that impart an inherent propensity to oligomerize/

aggregate; however, the precise nature of the higher order

SOD1 species that form in vivo either early or late in disease

remains poorly defined. Moreover, we lack a sufficient

understanding of the role of specific SOD1 higher-order

structures in disease pathogenesis to predict whether

disruption of mutant SOD1 oligomerization/aggregation

would be beneficial or detrimental. A recent study of forms

of SOD1 engineered to produce stable dimeric enzyme

suggested toxicity is not tied to aggregation (76). However,

data from cell culture models suggest that formation of large

SOD1 aggregates could be a primary mechanism of toxicity

(77), although it remains possible that it is the soluble

precursors of these large SOD1 aggregates and not the

aggregates themselves that are toxic.

Figure 2. Accumulation of SOD1-L126 truncation variant (L126Z) in somatodendritic compartments of spinal motor neurons. Tissue sections
embedded in paraffin were deparaffinized and immunostained with hSOD1 anti-serum at a dilution of 1:500. (A) Non-transgenic littermate 9
months old. (B) Representative image from 3.5-month-old L126Z mice. (C) Image from a 7-month-old symptomatic SOD1-L126Z mouse shows
longitudinal profiles of dendrites and motor neuron corpses filled with immunoreactivity. (D) Image from 9-month-old symptomatic SOD1-L126Z
mouse shows intensifying of motor neuron soma and circular profiles resembling dendritic cross-sections. Scale bar ¼ 50 mm [adapted from
(14)].
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The Copper Chaperone for SOD1 (CCS)

Human CCS is a three-domain polypeptide that confers

at least two critical stabilizing posttranslational modifica-

tions on newly synthesized SOD1: (i) the insertion of the

catalytic copper ion (45), and (ii) the oxidation of the

disulfide bond found within each SOD1 subunit (78). The

presence of a disulfide bond is rare for cytosolic proteins

given the strong reducing environment of the cytosol, and

recent studies suggest that CCS-mediated oxidation of this

disulfide bond occurs concomitant with copper delivery in

an oxygen- or superoxide-dependent fashion (78). It is

important to note that at the protein level, the ratio of SOD1

to CCS in the cytosol is estimated to be between 15:1 and

30:1 (79), meaning that CCS must cycle through the newly

translated SOD1 pool to activate these molecules (68). It is

presumed that upon copper delivery to SOD1, CCS

becomes recharged with copper via the membrane-bound

copper transporter CTR1, although to our knowledge, direct

protein-protein interactions between CCS and CTR1 have

not yet been demonstrated.

CCS domain I (residues 1–84) contains a copper-

binding motif MXCXXC that is postulated to acquire

copper ion from the membrane copper transporter CTR1

(68). Domain II (residues 85–233) is similar to human

SOD1 and retains amino acid residues found at the SOD1

dimer interface (80). Because dimer interface residues are

conserved, domain II is proposed to be responsible for the

specificity of CCS/SOD1 interaction via the formation of a

SOD1/CCS heterodimer (81). Domain III (residues 234–

273) contains the copper-binding motif CXC, which is

proposed to directly insert copper ion into nascent SOD1

(81). The ‘‘heterodimerization’’ model of CCS activation of

SOD1 (Fig. 4) has endured for the last decade, although the

spatial-temporal mechanistic details of the activation

process have remained elusive. Human CCS itself dimerizes

though its SOD1-like domain II, which contains a zinc

binding site and disulfide bond analogous to those found in

SOD1. Unanswered mechanistic questions include: How

does CCS reorganize itself to utilize domain II as a nascent

SOD1 recognition module? What conformational changes

accompany the transfer of copper from CCS domain I to

CCS domain III prior to delivery to SOD1? What amino

acid residues of both proteins participate in copper delivery

and disulfide bond oxidation? Perhaps most importantly,

how might fALS mutations in SOD1 interfere with CCS

action, and what are the properties of the resulting immature

SOD1 proteins (see below)?

An Alternate Model of CCS Action

To probe various mechanistic aspects of CCS action,

Blackburn and colleagues titrated purified human CCS with

increasing concentrations of Cu(I) followed by EXAFS and

gel filtration studies (82). Upon addition of a single

equivalent of Cu(I) per CCS molecule, they observed that

the ‘‘canonical’’ CCS dimer mediated by the SOD1-like

domain II dissociated into monomers and that addition of

additional equivalents resulted in the appearance of a ‘‘non-

canonical’’ dimer mediated by a Cu4S6 copper cluster

formed in part by the two CXC motifs of CCS domain III

(Fig. 5). This canonical-to-noncanonical CCS dimer tran-

sition, if it occurs in vivo, would seem to act as a functional

copper-sensing switch to make CCS domain II available to

nascent SOD1 binding only when sufficient copper is

available (82). Interestingly, a non-canonical domain III

mediated CCS dimer similar to that shown in Figure 5 was

also observed in the crystal structure of a yeast SOD1/yeast

CCS complex, although no copper was present in the

crystallization experiment (83). Taken together, these

observations suggest an alternate model of CCS action

shown in Figure 6. However, this new model has not been

unambiguously validated and does not reveal precise

mechanistic details of the posttranslational modification of

SOD1 or how the binding of a single copper ion results in

allosteric CCS dimer dissociation (82). The latter mecha-

nism is particularly intriguing, given that CCS contains its

own intrasubunit disulfide bond and bound zinc, which as

described above, are both factors that are known to stabilize

SOD1 dimers (48) and by extension, would be expected to

stabilize CCS dimers.

Immature Pathogenic SOD1 and Toxicity

We suspect that pathogenic SOD1 mutations may result

in increased levels of immature SOD1 folding intermediates

by hindering the action of CCS at various points in the

SOD1 maturation cycle (Fig. 6). These immature SOD1

folding intermediates may lack some or all posttranslational

modifications that are dependent upon CCS activity,

including the insertion of copper co-factors and oxidation

of the intrasubunit disulfide bond. Two recent in vitro
studies indicate that failure to form the intrasubunit disulfide

bond may be a key step (73, 84). Similarly, studies of

aggregates isolated from cell culture and transgenic mouse

models indicate that immature SOD1 molecules eventually

end up in the insoluble inclusions (85).

One possible explanation for these observations is that

mutant forms of SOD1 interact with CCS in a manner that

inhibits normal posttranslational modifications (for example,

the nascent metal-binding mutants). Alternatively, some

mutant forms may be so destabilized that CCS encounters

only a fraction of these variants before they exit the soluble

fraction or are turned over by the protein quality control

machinery (for example, the nascent b-barrel mutants).

Indeed, some mutants, for example, the nascent L126

truncation variant, are so unstable that they would have little

chance of normal interaction with CCS. Indeed, CCS would

likely fail to bind to and stabilize the nascent L126

molecules it does encounter because the latter molecule is

completely lacking a b-strand necessary for wild type SOD1

heterodimerization with CCS domain II. Although the

nascent b-barrel mutants such as A4V, G37R, and G93A

1146 SEETHARAMAN ET AL

 at SAGE Publications on November 3, 2014ebm.sagepub.comDownloaded from 

http://ebm.sagepub.com/


Figure 3. Metal deficiency in fALS SOD1 gives rise to linear cross-b fibrils and helical filamentous arrays through loss of negative design (37,
74). (A) Linear, amyloid-like filaments formed by 3 dimers shown from top to bottom in green, gold, and blue. Nonnative SOD1-SOD1
interactions are shown as red patches in (i) and are boxed in (ii–iv). The ‘‘cross-b’’ structure observed in amyloid fibrils is shown schematically in
(v). (B) Metal deficiency in pathogenic SOD1 also gives rise to water-filled helical filamentous arrays. (i) One-half of one turn of the helical
filament is represented by the two dimers shown from top to bottom in green and gold. (ii–iii) Ribbon representation. The arrow indicates the
diameter of the central cavity. The non-native interactions between SOD1 dimers are boxed. (iv) Schematic view of the helical filamentous array
shown in (iii) with the new interdimer contacts shown as red patches. (v) This view of the helical filament is rotated 908 around a horizontal axis
relative to the view in (iii) and (iv). Successive Zn–H46R dimers (green, yellow, blue, and red) comprise one turn of helical filament with a pitch of
;35 Å [adapted from (37)].
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(among many others) are not quite as radically destabilized

as L126Z, they remain significantly thermally destabilized

relative to the nascent wild type enzyme (43, 44). As

mentioned previously, because the SOD1:CCS ratio is

between 15 and 30:1, we speculate that CCS is unable to

cycle through the entire pool of these nascent SOD1

pathogenic mutants before they are degraded, oligomerize,

or enter the insoluble fraction.

Metal binding mutants such as H46R, H48Q, H46R/

H48Q, H80R, and D124V (among others), are not

destabilized relative to the nascent wild type enzyme, but

CCS is unable to convert these molecules to their mature

forms via posttranslational modification because these

mutations directly prevent metal binding. A recent study

on the double copper-binding site mutant H46R/H48Q

SOD1 revealed that this pathogenic variant forms quite

stable 1:1 complexes with CCS that do not dissociate in

analytical gel filtration, analytical ultracentrifugation, and

native gel shift experiments (86), suggesting that this

nonproductive SOD1:CCS complex may hinder CCS

cycling through the newly translated pool of SOD1

molecules. Finally, CCS would be unable to fully stabilize

the pathogenic SOD1 mutants C57R and C146R, which are

incapable of forming the intrasubunit disulfide bond.

The notion that soluble immature pathogenic SOD1

molecules may be the noxious species in SOD1-linked

fALS is supported by recent studies from the Culotta and

Elliott laboratories. Over-expression of CCS was observed

to greatly accelerate disease in a G93A SOD1 mouse model

in the absence of visible proteinaceous inclusions (87).

Surprisingly, CCS over-expression failed to enhance

oxidation of the G93A SOD1 disulfide bond, and in fact,

the population of disulfide-reduced G93A SOD1 in the

soluble fraction of brain and spinal cord of these animals

was elevated (88). In addition, CCS over-expression did not

result in a larger fraction of active G93A SOD1 in these

animals, suggesting that the SOD1 proteins also remain at

least partially metal deficient (88). In this murine model of

ALS, there appears to be augmentation of the mitochondrial

pathology that is inherent in the G93A mice, but is not

found in several other models (e.g., H46R/H48Q, G85R,

L126Z, and G127insTGGG). These data suggest that CCS

may be interacting with nascent G93A (these proteins are at

an approximate stoichiometric ratio of 1:1 in these animals),

preventing it from forming insoluble aggregates, but at the

Figure 4. Heterodimerization model of CCS action after O’Halloran and colleagues (68). Newly translated SOD1 monomers are shown in blue.
CCS domain I is shown in red, CCS domain II is shown in green, and CCS domain III is shown in yellow (inset).
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Figure 5. Human CCS quaternary structure as a function of copper loading. The CCS canonical dimer [pdb code 1QUP (80)] reorganizes to
form the noncanonical dimer [pdb code 1JK9 (83)] upon the binding of Cu(I) (82), thereby freeing domain II to interact with nascent SOD1.

Figure 6. An alternate model of CCS action and how the various pathogenic SOD1 mutations may hinder CCS-mediated SOD1 maturation. (1)
SOD1 is translated. (2) The canonical CCS dimer is loaded with Cu(I) to generate the noncanonical CCS dimer mediated by a Cu4S6 cluster
(82). (3) Nascent SOD1 binds to domain II of CCS in the noncanonical, Cu(I)-loaded CCS dimer. (4) Zinc is loaded into SOD1 (this could also
occur as early as step 1). (5–7) Cu(I) from the Cu4S6 cluster is transferred to nascent SOD1 and the intrasubunit disulfide bond in nascent SOD1
is oxidized (68). Upon being depleted with Cu(I), CCS reforms the canonical CCS dimer and the cycle repeats. The pathogenic SOD1 mutations
listed in Table 1 may interfere with CCS-mediated SOD1 maturation at the various positions indicated. The numbers of the pathogenic SOD1
mutants in the blue boxes correspond to their numbers in Table 1.
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same time, failing to impart the stabilizing posttranslational

modifications that transform the nascent SOD1 protein into

the enormously stable, mature holoenzyme. It appears that

the observed elevated levels of soluble, copper-depleted,

disulfide-reduced G93A SOD1 augments the mitochondrial

pathology, resulting in significantly earlier onset of paralytic

symptoms in these animals. However, it remains unclear

why CCS over-expression results in elevated levels of

disulfide-reduced G93A SOD1, and additional studies

aimed at understanding this phenomenon are needed.

Conclusions

More than 100 mutations in SOD1 have been identified

as causing fALS. The precise role of mutant SOD1

oligomerization/aggregation in disease pathogenesis re-

mains uncertain, although there is little dispute that

insoluble aggregates of mutant SOD1 are found in all of

the transgenic mouse models that have been generated thus

far, except in one model where CCS is also over-expressed.

Ultimately, the role of mutant SOD1 aggregation in disease

may not be established until therapeutic compounds that

specifically target mutant SOD1 aggregation are tested in

clinical applications. We suggest a potential mechanism of

toxicity involving reduced ability of the mutant proteins to

interact properly with CCS, which mediates critical post-

translational modification of the SOD1 as it folds into a

stable dimeric enzyme. The resulting immature pathogenic

SOD1 proteins are essentially folding intermediates that

exert their toxic effects through their aggregated or soluble

forms, or both.
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