Thanks to visit codestin.com
Credit goes to dlmf.nist.gov
DLMF
Index
Notations
Search
Help?
Citing
Customize
About the Project
Notations
Notations D
Notations F
Notations E
♦
*
♦
A
♦
B
♦
C
♦
D
♦E♦
F
♦
G
♦
H
♦
I
♦
J
♦
K
♦
L
♦
M
♦
N
♦
O
♦
P
♦
Q
♦
R
♦
S
♦
T
♦
U
♦
V
♦
W
♦
X
♦
Y
♦
Z
♦
≡
equals by definition;
Common Notations and Definitions
e
elementary charge;
§18.39(ii)
e
base of natural logarithm;
(4.2.11)
∈
element of;
Common Notations and Definitions
∉
not an element of;
Common Notations and Definitions
E
n
Euler numbers;
§24.2(ii)
E
n
(
ℓ
)
generalized Euler numbers;
§24.16(i)
E
(
α
)
=
E
(
k
)
notation used by
Abramowitz and Stegun (
1964
, Chapter 17)
;
§19.1
(with
E
(
k
)
: Legendre’s complete elliptic integral of the second kind
)
E
(
k
)
Legendre’s complete elliptic integral of the second kind;
(19.2.8)
η
(
τ
)
Dedekind’s eta function (or Dedekind modular function);
(27.14.12)
E
1
(
z
)
exponential integral;
(6.2.1)
E
′
(
k
)
Legendre’s complementary complete elliptic integral of the second kind;
(19.2.8_2)
e
0
(
x
)
=
π
Hi
(
−
x
)
notation used by
Tumarkin (
1959
)
;
§9.1
(with
Hi
(
z
)
: Scorer function (inhomogeneous Airy function)
and
π
: the ratio of the circumference of a circle to its diameter
)
e
~
0
(
x
)
=
−
π
Gi
(
−
x
)
notation used by
(Tumarkin,
1959
)
;
§9.1
(with
Gi
(
z
)
: Scorer function (inhomogeneous Airy function)
and
π
: the ratio of the circumference of a circle to its diameter
)
E
a
,
b
(
z
)
Mittag-Leffler function;
(10.46.3)
E
n
(
x
)
Euler polynomials;
§24.2(ii)
𝐄
ν
(
z
)
Weber function;
(11.10.2)
E
p
(
z
)
generalized exponential integral;
(8.19.1)
E
q
(
x
)
q
-exponential function;
(17.3.2)
e
q
(
x
)
q
-exponential function;
(17.3.1)
E
s
(
𝐳
)
elementary symmetric function;
(19.19.4)
E
n
(
ℓ
)
(
x
)
generalized Euler polynomials;
§24.16(i)
E
~
n
(
x
)
periodic Euler functions;
§24.2(iii)
E
(
ϕ
\
α
)
=
E
(
ϕ
,
k
)
notation used by
Abramowitz and Stegun (
1964
, Chapter 17)
;
§19.1
(with
E
(
ϕ
,
k
)
: Legendre’s incomplete elliptic integral of the second kind
)
E
(
ϕ
,
k
)
Legendre’s incomplete elliptic integral of the second kind;
(19.2.5)
e
j
Weierstrass lattice roots;
§23.3(i)
Ec
ν
2
m
(
z
,
k
2
)
∝
𝐸𝑐
ν
2
m
(
z
,
k
2
)
notation used by
Ince (
1940b
)
;
§29.1
(with
𝐸𝑐
ν
m
(
z
,
k
2
)
: Lamé function
)
Ec
ν
2
m
+
1
(
z
,
k
2
)
∝
𝐸𝑠
ν
2
m
+
1
(
z
,
k
2
)
notation used by
Ince (
1940b
)
;
§29.1
(with
𝐸𝑠
ν
m
(
z
,
k
2
)
: Lamé function
)
𝐸𝑐
ν
m
(
z
,
k
2
)
Lamé function;
§29.3(iv)
Ei
(
x
)
exponential integral;
§6.2(i)
Ein
(
z
)
complementary exponential integral;
(6.2.3)
el1
(
x
,
k
c
)
Bulirsch’s incomplete elliptic integral of the first kind;
(19.2.11_5)
el2
(
x
,
k
c
,
a
,
b
)
Bulirsch’s incomplete elliptic integral of the second kind;
(19.2.12)
el3
(
x
,
k
c
,
p
)
Bulirsch’s incomplete elliptic integral of the third kind;
(19.2.16)
envAi
(
x
)
envelope of Airy function
Ai
(
x
)
;
§2.8(iii)
envBi
(
x
)
envelope of Airy function
Bi
(
x
)
;
§2.8(iii)
env
J
ν
(
x
)
envelope of Bessel function
J
ν
(
x
)
;
§2.8(iv)
env
Y
ν
(
x
)
envelope of Bessel function
Y
ν
(
x
)
;
§2.8(iv)
env
U
(
c
,
x
)
envelope of parabolic cylinder function
U
(
c
,
x
)
;
§14.15(v)
env
U
¯
(
c
,
x
)
envelope of parabolic cylinder function
U
¯
(
c
,
x
)
;
§14.15(v)
ϵ
j
k
ℓ
Levi-Civita symbol;
(1.6.14)
ℰ
(
x
,
k
)
Jacobi’s epsilon function;
(22.16.14)
≡
modular equivalence;
Common Notations and Definitions
Erf
z
=
1
2
π
erf
z
alternative notation for the error function;
§7.1
(with
π
: the ratio of the circumference of a circle to its diameter
and
erf
z
: error function
)
erf
z
error function;
(7.2.1)
erfc
z
complementary error function;
(7.2.2)
Erfi
z
=
e
z
2
F
(
z
)
alternative notation for Dawson’s integral;
§7.1
(with
F
(
z
)
: Dawson’s integral
and
e
: base of natural logarithm
)
Es
ν
2
m
+
1
(
z
,
k
2
)
∝
𝐸𝑐
ν
2
m
+
1
(
z
,
k
2
)
notation used by
Ince (
1940b
)
;
§29.1
(with
𝐸𝑐
ν
m
(
z
,
k
2
)
: Lamé function
)
Es
ν
2
m
+
2
(
z
,
k
2
)
∝
𝐸𝑠
ν
2
m
+
2
(
z
,
k
2
)
notation used by
Ince (
1940b
)
;
§29.1
(with
𝐸𝑠
ν
m
(
z
,
k
2
)
: Lamé function
)
𝐸𝑠
ν
m
(
z
,
k
2
)
Lamé function;
§29.3(iv)
etr
(
𝐀
)
exponential of trace;
(1.2.77)
exp
z
exponential function;
(4.2.19)