Thanks to visit codestin.com
Credit goes to dlmf.nist.gov
DLMF
Index
Notations
Search
Help?
Citing
Customize
About the Project
Notations
Notations E
Notations G
Notations F
♦
*
♦
A
♦
B
♦
C
♦
D
♦
E
♦F♦
G
♦
H
♦
I
♦
J
♦
K
♦
L
♦
M
♦
N
♦
O
♦
P
♦
Q
♦
R
♦
S
♦
T
♦
U
♦
V
♦
W
♦
X
♦
Y
♦
Z
♦
F
D
Lauricella’s multivariate hypergeometric function;
§19.15
F
n
Fibonacci number;
§26.11
f
(
x
)
Euler’s reciprocal function;
(27.14.2)
f
(
z
)
auxiliary function for Fresnel integrals;
(7.2.10)
f
(
z
)
auxiliary function for sine and cosine integrals;
(6.2.17)
F
(
z
)
Dawson’s integral;
(7.2.5)
ℱ
(
z
)
Fresnel integral;
(7.2.6)
𝖥
(
z
−
1
)
=
ψ
(
z
)
notation used by
Pairman (
1919
)
;
§5.1
(with
ψ
(
z
)
: psi (or digamma) function
)
f
e
,
m
(
h
)
joining factor for radial Mathieu functions;
§28.22(i)
F
ν
(
z
)
=
Me
ν
(
z
,
q
)
notation used by
Abramowitz and Stegun (
1964
, Chapter 20)
;
§28.1
(with
Me
ν
(
z
,
q
)
: modified Mathieu function
)
f
o
,
m
(
h
)
joining factor for radial Mathieu functions;
§28.22(i)
F
p
(
z
)
terminant function;
(2.11.11)
F
s
(
x
)
Fermi–Dirac integral;
(25.12.14)
ℱ
(
f
)
(
s
)
Fourier transform;
(1.14.1)
ℱ
c
(
f
)
(
s
)
Fourier cosine transform;
(1.14.9)
ℱ
s
(
f
)
(
s
)
Fourier sine transform;
(1.14.10)
ℱ
(
u
)
Fourier transform of a tempered distribution;
(1.16.35)
F
(
ϕ
\
α
)
=
F
(
ϕ
,
k
)
notation used by
Abramowitz and Stegun (
1964
, Chapter 17)
;
§19.1
(with
F
(
ϕ
,
k
)
: Legendre’s incomplete elliptic integral of the first kind
)
F
(
ϕ
,
k
)
Legendre’s incomplete elliptic integral of the first kind;
(19.2.4)
F
ℓ
(
η
,
ρ
)
regular Coulomb radial function;
(33.2.3)
F
(
x
,
s
)
periodic zeta function;
(25.13.1)
F
(
a
,
b
;
c
;
z
)
or
F
(
a
,
b
c
;
z
)
=
F
1
2
(
a
,
b
;
c
;
z
)
Gauss’ hypergeometric function;
(15.2.1)
𝐅
(
a
,
b
;
c
;
z
)
or
𝐅
(
a
,
b
c
;
z
)
=
𝐅
1
2
(
a
,
b
;
c
;
z
)
Olver’s hypergeometric function;
(15.2.2)
f
(
ϵ
,
ℓ
;
r
)
=
s
(
ϵ
,
ℓ
;
r
)
notation used by
Greene
et al.
(
1979
)
;
item
Greene
et al.
(
1979
)
:
(with
s
(
ϵ
,
ℓ
;
r
)
: regular Coulomb function
)
f
(
ϵ
,
ℓ
;
r
)
regular Coulomb function;
(33.14.4)
F
1
1
(
a
;
b
;
z
)
=
M
(
a
,
b
,
z
)
notation for the Kummer confluent hypergeometric function;
§16.2
F
1
1
(
a
;
b
;
𝐓
)
or
F
1
1
(
a
b
;
𝐓
)
confluent hypergeometric function of matrix argument (first kind);
§35.6(i)
F
1
2
(
a
,
b
;
c
;
z
)
=
F
(
a
,
b
;
c
;
z
)
notation for Gauss’ hypergeometric function;
§16.2
F
1
2
(
a
,
b
;
c
;
𝐓
)
or
F
1
2
(
a
,
b
c
;
𝐓
)
Gaussian hypergeometric function of matrix argument;
(35.7.1)
𝐅
1
2
(
a
,
b
;
c
;
z
)
Olver’s hypergeometric function;
(15.2.2)
F
q
p
(
a
1
,
…
,
a
p
;
b
1
,
…
,
b
q
;
z
)
or
F
q
p
(
a
1
,
…
,
a
p
b
1
,
…
,
b
q
;
z
)
alternatively
F
q
p
(
𝐚
;
𝐛
;
z
)
or
F
q
p
(
𝐚
𝐛
;
z
)
generalized hypergeometric function;
§16.2
𝐅
q
p
(
𝐚
;
𝐛
;
z
)
or
𝐅
q
p
(
𝐚
𝐛
;
z
)
scaled (or Olver’s) generalized hypergeometric function;
(16.2.5)
F
q
p
(
a
1
,
…
,
a
p
;
b
1
,
…
,
b
q
;
𝐓
)
or
F
q
p
(
a
1
,
…
,
a
p
b
1
,
…
,
b
q
;
𝐓
)
generalized hypergeometric function of matrix argument;
(35.8.1)
f
(
0
)
(
ϵ
,
ℓ
;
r
)
=
f
(
ϵ
,
ℓ
;
r
)
notation used by
Greene
et al.
(
1979
)
;
item
Greene
et al.
(
1979
)
:
(with
f
(
ϵ
,
ℓ
;
r
)
: regular Coulomb function
)
F
(
a
,
b
;
t
:
q
)
alternative notation for specialization of
ϕ
1
2
;
Fine (
1988
)
;
§17.1
F
1
(
α
;
β
,
β
′
;
γ
;
x
,
y
)
first Appell function;
(16.13.1)
F
2
(
α
;
β
,
β
′
;
γ
,
γ
′
;
x
,
y
)
second Appell function;
(16.13.2)
F
3
(
α
,
α
′
;
β
,
β
′
;
γ
;
x
,
y
)
third Appell function;
(16.13.3)
F
4
(
α
,
β
;
γ
,
γ
′
;
x
,
y
)
fourth Appell function;
(16.13.4)
Fe
n
(
z
,
q
)
modified Mathieu function;
(28.20.6)
fe
n
(
z
,
q
)
second solution, Mathieu’s equation;
(28.5.1)
Fey
n
(
z
,
q
)
=
1
2
π
g
e
,
n
(
h
)
ce
n
(
0
,
q
)
Mc
n
(
2
)
(
z
,
h
)
notation used by
Arscott (
1964b
)
,
McLachlan (
1947
)
;
§28.1
(with
ce
n
(
z
,
q
)
: Mathieu function
,
π
: the ratio of the circumference of a circle to its diameter
and
Mc
n
(
j
)
(
z
,
h
)
: radial Mathieu function
)