Thanks to visit codestin.com
Credit goes to dlmf.nist.gov
DLMF
Index
Notations
Search
Help?
Citing
Customize
About the Project
Notations
Notations O
Notations Q
Notations P
♦
*
♦
A
♦
B
♦
C
♦
D
♦
E
♦
F
♦
G
♦
H
♦
I
♦
J
♦
K
♦
L
♦
M
♦
N
♦
O
♦P♦
Q
♦
R
♦
S
♦
T
♦
U
♦
V
♦
W
♦
X
♦
Y
♦
Z
♦
P
I
,
P
II
,
P
III
,
P
III
′
,
P
IV
,
P
V
,
P
VI
Painlevé transcendents;
§32.2(i)
p
k
(
n
)
total number of partitions of
n
into at most
k
parts;
§26.9(i)
P
(
z
)
=
1
2
erfc
(
−
z
/
2
)
alternative notation for the complementary error function;
§7.1
(with
erfc
z
: complementary error function
)
p
k
(
n
)
number of partitions of
n
into at most
k
parts;
§26.9(i)
P
n
(
x
)
Legendre polynomial;
Table 18.3.1
P
n
∗
(
x
)
shifted Legendre polynomial;
Table 18.3.1
𝖯
ν
(
x
)
=
𝖯
ν
0
(
x
)
Ferrers function of the first kind;
§14.2(ii)
(with
𝖯
ν
μ
(
x
)
: Ferrers function of the first kind
)
P
ν
(
z
)
=
P
ν
0
(
z
)
Legendre function of the first kind;
§14.2(ii)
(with
P
ν
μ
(
z
)
: associated Legendre function of the first kind
)
P
z
(
a
)
=
γ
(
a
,
z
)
notation used by
Batchelder (
1967
, p. 63)
;
§8.1
(with
γ
(
a
,
z
)
: incomplete gamma function
)
𝖯
−
1
2
+
i
τ
−
μ
(
x
)
conical function;
§14.20(i)
P
n
(
α
,
β
)
(
x
)
Jacobi polynomial;
Table 18.3.1
P
n
(
λ
)
(
x
)
=
C
n
(
λ
)
(
x
)
notation used by
Szegő (
1975
, §4.7)
;
§18.1(iii)
(with
C
n
(
λ
)
(
x
)
: ultraspherical (or Gegenbauer) polynomial
)
P
ν
(
γ
,
δ
)
(
𝐓
)
Jacobi function of matrix argument;
(35.7.2)
P
ν
μ
(
x
)
=
𝖯
ν
μ
(
x
)
notation used by
Erdélyi
et al.
(
1953a
)
,
Olver (
1997b
)
;
§14.1
(with
𝖯
ν
μ
(
x
)
: Ferrers function of the first kind
)
𝖯
ν
μ
(
x
)
Ferrers function of the first kind;
(14.3.1)
P
ν
μ
(
x
)
=
𝖯
ν
μ
(
x
)
notation used by
Magnus
et al.
(
1966
)
;
§14.1
(with
𝖯
ν
μ
(
x
)
: Ferrers function of the first kind
)
P
ν
μ
(
z
)
associated Legendre function of the first kind;
§14.21(i)
𝔓
ν
μ
(
z
)
=
P
ν
μ
(
z
)
notation used by
Magnus
et al.
(
1966
)
;
§14.1
(with
P
ν
μ
(
z
)
: associated Legendre function of the first kind
)
P
(
a
,
z
)
normalized incomplete gamma function;
(8.2.4)
p
(
condition
,
n
)
restricted number of partitions of
n
;
§26.10(i)
℘
(
z
)
(=
℘
(
z
|
𝕃
)
=
℘
(
z
;
g
2
,
g
3
)
)
Weierstrass
℘
-function;
(23.2.4)
p
k
(
≤
m
,
n
)
number of partitions of
n
into at most
k
parts, each less than or equal to
m
;
§26.9(i)
p
k
(
𝒟
,
n
)
number of partitions of
n
into at most
k
distinct parts;
§26.10(i)
P
ℓ
(
ϵ
,
r
)
=
(
2
ℓ
+
1
)
!
f
(
ϵ
,
ℓ
;
r
)
/
2
ℓ
+
1
notation used by
Curtis (
1964a
)
;
item
Curtis (
1964a
)
:
(with
f
(
ϵ
,
ℓ
;
r
)
: regular Coulomb function
and
!
: factorial (as in
n
!
)
)
H
n
(
x
;
c
)
associated Hermite polynomial;
§18.30(iv)
P
n
(
x
;
c
)
associated Legendre polynomial;
(18.30.6)
𝒫
n
λ
(
x
;
ϕ
,
c
)
associated Meixner–Pollaczek polynomial;
§18.30(v)
P
n
(
λ
)
(
x
;
ϕ
)
Meixner–Pollaczek polynomial;
§18.19
P
m
,
n
α
,
β
,
γ
(
x
,
y
)
triangle polynomial;
(18.37.7)
P
n
(
α
,
β
)
(
x
;
c
)
associated Jacobi polynomial;
(18.30.4)
Π
(
n
;
ϕ
\
α
)
=
Π
(
ϕ
,
α
2
,
k
)
notation used by
Abramowitz and Stegun (
1964
, Chapter 17)
;
§19.1
(with
Π
(
ϕ
,
α
2
,
k
)
: Legendre’s incomplete elliptic integral of the third kind
)
℘
(
z
;
g
2
,
g
3
)
Weierstrass
℘
-function;
(23.3.8)
P
n
(
λ
)
(
x
;
a
,
b
)
Pollaczek polynomial;
(18.35.4)
p
n
(
x
;
a
,
b
;
q
)
little
q
-Jacobi polynomial;
(18.27.13)
P
n
(
α
,
β
)
(
x
;
c
,
d
;
q
)
big
q
-Jacobi polynomial;
(18.27.6)
p
n
(
x
;
a
,
b
,
a
¯
,
b
¯
)
continuous Hahn polynomial;
§18.19
P
n
(
x
;
a
,
b
,
c
;
q
)
big
q
-Jacobi polynomial;
(18.27.5)
p
n
(
x
;
a
,
b
,
c
,
d
|
q
)
Askey–Wilson polynomial;
(18.28.1)
P
{
α
β
γ
a
1
b
1
c
1
z
a
2
b
2
c
2
}
Riemann’s
P
-symbol for solutions of the generalized hypergeometric differential equation;
(15.11.3)
ph
phase;
(1.9.7)
ϕ
(
n
)
Euler’s totient;
(27.2.7)
ϕ
(
z
)
Airy phase function;
(9.8.8)
Φ
(
z
)
=
1
2
erfc
(
−
z
/
2
)
alternative notation for the complementary error function;
§7.1
(with
erfc
z
: complementary error function
)
ϕ
k
(
n
)
sum of powers of integers relatively prime to a number;
(27.2.6)
ϕ
ν
(
x
)
phase of derivatives of Bessel functions;
(10.18.3)
ϕ
λ
(
α
,
β
)
(
t
)
Jacobi function;
(15.9.11)
ϕ
(
z
,
s
)
=
Li
s
(
z
)
notation used by
(Truesdell,
1945
)
;
§25.12(ii)
(with
Li
s
(
z
)
: polylogarithm
)
φ
n
,
m
(
z
,
q
)
combined theta function;
§20.11(v)
Φ
K
(
t
;
𝐱
)
cuspoid catastrophe of codimension
K
;
(36.2.1)
Φ
(
a
;
b
;
z
)
=
M
(
a
,
b
,
z
)
notation used by
Humbert (
1920
)
;
§13.1
(with
M
(
a
,
b
,
z
)
:
=
F
1
1
(
a
;
b
;
z
)
Kummer confluent hypergeometric function
)
ϕ
(
ρ
,
β
;
z
)
generalized Bessel function;
(10.46.1)
Φ
(
z
,
s
,
a
)
Lerch’s transcendent;
(25.14.1)
Φ
(
E
)
(
s
,
t
;
𝐱
)
elliptic umbilic catastrophe;
(36.2.2)
Φ
(
H
)
(
s
,
t
;
𝐱
)
hyperbolic umbilic catastrophe;
(36.2.3)
Φ
(
U
)
(
s
,
t
;
𝐱
)
elliptic umbilic catastrophe for
U
=
E
or
K
;
§36.2(i)
Φ
(
1
)
(
a
;
b
,
b
′
;
c
;
q
;
x
,
y
)
first
q
-Appell function;
(17.4.5)
Φ
(
2
)
(
a
;
b
,
b
′
;
c
,
c
′
;
q
;
x
,
y
)
second
q
-Appell function;
(17.4.6)
Φ
(
3
)
(
a
,
a
′
;
b
,
b
′
;
c
;
q
;
x
,
y
)
third
q
-Appell function;
(17.4.7)
Φ
(
4
)
(
a
,
b
;
c
,
c
′
;
q
;
x
,
y
)
fourth
q
-Appell function;
(17.4.8)
ϕ
s
r
+
1
(
a
0
,
…
,
a
r
;
b
1
,
…
,
b
s
;
q
,
z
)
or
ϕ
s
r
+
1
(
a
0
,
…
,
a
r
b
1
,
…
,
b
s
;
q
,
z
)
basic hypergeometric (or
q
-hypergeometric) function;
(17.4.1)
π
the ratio of the circumference of a circle to its diameter;
(3.12.1)
π
set of plane partitions;
§26.12(i)
π
(
x
)
number of primes not exceeding a number;
(27.2.2)
Π
(
z
−
1
)
=
Γ
(
z
)
notation used by Gauss;
§5.1
(with
Γ
(
z
)
: gamma function
)
Π
m
(
a
)
=
Γ
m
(
a
+
1
2
(
m
+
1
)
)
notation used by
Herz (
1955
, p. 480)
;
§35.1
(with
Γ
m
(
a
)
: multivariate gamma function
)
Π
(
α
2
,
k
)
Legendre’s complete elliptic integral of the third kind;
(19.2.8)
Π
(
n
\
α
)
=
Π
(
α
2
,
k
)
notation used by
Abramowitz and Stegun (
1964
, Chapter 17)
;
§19.1
(with
Π
(
α
2
,
k
)
: Legendre’s complete elliptic integral of the third kind
)
Π
1
(
ν
,
k
)
=
Π
(
α
2
,
k
)
notation used by
Erdélyi
et al.
(
1953b
, Chapter 13)
;
§19.1
(with
Π
(
α
2
,
k
)
: Legendre’s complete elliptic integral of the third kind
)
Π
(
ϕ
,
α
2
,
k
)
Legendre’s incomplete elliptic integral of the third kind;
(19.2.7)
Π
(
ϕ
,
ν
,
k
)
=
Π
(
ϕ
,
α
2
,
k
)
notation used by
Erdélyi
et al.
(
1953b
, Chapter 13)
;
§19.1
(with
Π
(
ϕ
,
α
2
,
k
)
: Legendre’s incomplete elliptic integral of the third kind
)
pp
(
n
)
number of plane partitions of
n
;
§26.12(i)
p
q
(
z
,
k
)
generic Jacobian elliptic function;
(22.2.10)
𝖯𝗌
n
m
(
x
,
γ
2
)
spheroidal wave function of the first kind;
§30.4(i)
ps
n
m
(
x
,
γ
2
)
=
𝖯𝗌
n
m
(
x
,
γ
2
)
notation used by
Meixner and Schäfke (
1954
)
for the spheroidal wave function of the first kind;
§30.1
(with
𝖯𝗌
n
m
(
x
,
γ
2
)
: spheroidal wave function of the first kind
)
Ps
n
m
(
z
,
γ
2
)
=
𝑃𝑠
n
m
(
z
,
γ
2
)
notation used by
Meixner and Schäfke (
1954
)
for the spheroidal wave function of complex argument;
§30.1
(with
𝑃𝑠
n
m
(
z
,
γ
2
)
: spheroidal wave function of complex argument
)
𝑃𝑠
n
m
(
z
,
γ
2
)
spheroidal wave function of complex argument;
§30.6
ψ
(
x
)
Chebyshev
ψ
-function;
(25.16.1)
Ψ
(
z
)
=
ψ
(
z
)
notation used by
Davis (
1933
)
;
§5.1
(with
ψ
(
z
)
: psi (or digamma) function
)
Ψ
(
z
−
1
)
=
ψ
(
z
)
notation used by Gauss,
Jahnke and Emde (
1945
)
;
§5.1
(with
ψ
(
z
)
: psi (or digamma) function
)
ψ
(
z
)
psi (or digamma) function;
(5.2.2)
Ψ
K
(
𝐱
)
canonical integral function;
(36.2.4)
Ψ
2
(
𝐱
)
Pearcey integral;
(36.2.14)
Ψ
(
E
)
(
𝐱
)
elliptic umbilic canonical integral function;
(36.2.5)
Ψ
(
H
)
(
𝐱
)
hyperbolic umbilic canonical integral function;
(36.2.5)
ψ
(
n
)
(
z
)
polygamma functions;
§5.15
Ψ
(
U
)
(
𝐱
)
umbilic canonical integral function;
(36.2.5)
Ψ
K
(
𝐱
;
k
)
diffraction catastrophe;
(36.2.10)
Ψ
(
E
)
(
𝐱
;
k
)
elliptic umbilic canonical integral function;
(36.2.11)
Ψ
(
H
)
(
𝐱
;
k
)
hyperbolic umbilic canonical integral function;
(36.2.11)
Ψ
(
U
)
(
𝐱
;
k
)
umbilic canonical integral function;
(36.2.11)
Ψ
(
a
;
b
;
𝐓
)
confluent hypergeometric function of matrix argument (second kind);
(35.6.2)
Ψ
(
a
;
b
;
z
)
=
U
(
a
,
b
,
z
)
notation used by
Erdélyi
et al.
(
1953a
, §6.5)
;
§13.1
(with
U
(
a
,
b
,
z
)
: Kummer confluent hypergeometric function
)
ψ
s
r
(
a
1
,
…
,
a
r
;
b
1
,
…
,
b
s
;
q
,
z
)
or
ψ
s
r
(
a
1
,
…
,
a
r
b
1
,
…
,
b
s
;
q
,
z
)
bilateral basic hypergeometric (or bilateral
q
-hypergeometric) function;
(17.4.3)