Thanks to visit codestin.com
Credit goes to dlmf.nist.gov

About the Project
17 q-Hypergeometric and Related FunctionsProperties

Β§17.5 Ο•00,Ο•01,Ο•11 Functions

Euler’s Second Sum

17.5.1 Ο•00⁑(βˆ’;βˆ’;q,z)=βˆ‘n=0∞(βˆ’1)n⁒q(n2)⁒zn(q;q)n=(z;q)∞;

compare (17.3.2).

q-Binomial Series

17.5.2 Ο•01⁑(a;βˆ’;q,z)=(a⁒z;q)∞(z;q)∞,
|z|<1;

compare (17.2.37). This equation can be used as the analytic continuation for this Ο•01.

q-Binomial Theorem

Euler’s First Sum

17.5.4 Ο•01⁑(0;βˆ’;q,z)=βˆ‘n=0∞zn(q;q)n=1(z;q)∞,
|z|<1;

compare (17.3.1). This equation can be used as the analytic continuation for this Ο•01.

Cauchy’s Sum

17.5.5 Ο•11⁑(ac;q,c/a)=(c/a;q)∞(c;q)∞.