Thanks to visit codestin.com
Credit goes to dlmf.nist.gov

About the Project
29 Lamé FunctionsLamé Functions

§29.2 Differential Equations

Contents
  1. §29.2(i) Lamé’s Equation
  2. §29.2(ii) Other Forms

§29.2(i) Lamé’s Equation

29.2.1 d2wdz2+(hν(ν+1)k2sn2(z,k))w=0,

where k and ν are real parameters such that 0<k<1 and ν12. For sn(z,k) see §22.2. This equation has regular singularities at the points 2pK+(2q+1)iK, where p,q, and K, K are the complete elliptic integrals of the first kind with moduli k, k(=(1k2)1/2), respectively; see §19.2(ii). In general, at each singularity each solution of (29.2.1) has a branch point (§2.7(i)). See Figure 29.2.1.

\begin{picture}(10.0,8.0)(-5.0,-4.0)\put(0.0,-4.0){\line(0,1){8.0}}
\put(-5.0,0.0){\line(1,0){10.0}}
\put(-4.17,-3.15){$\times$}\put(-2.17,-3.15){$\times$}\put(-0.17,-3.15){$%
\times$}\put(1.83,-3.15){$\times$}\put(3.83,-3.15){$\times$}
\put(-4.17,-1.15){$\times$}\put(-2.17,-1.15){$\times$}\put(-0.17,-1.15){$%
\times$}\put(1.83,-1.15){$\times$}\put(3.83,-1.15){$\times$}
\put(-4.17,0.85){$\times$}\put(-2.17,0.85){$\times$}\put(-0.17,0.85){$\times$}%
\put(1.83,0.85){$\times$}\put(3.83,0.85){$\times$}
\put(-4.17,2.85){$\times$}\put(-2.17,2.85){$\times$}\put(-0.17,2.85){$\times$}%
\put(1.83,2.85){$\times$}\put(3.83,2.85){$\times$}
{\put(-4.0,0.0){\line(0,1){0.15}}\put(-2.0,0.0){\line(0,1){0.15}}\put(0.0,0.0)%
{\line(0,1){0.15}}\put(2.0,0.0){\line(0,1){0.15}}\put(4.0,0.0){\line(0,1){0.15%
}}}
{\put(0.0,-2.0){\line(1,0){0.15}}\put(0.0,2.0){\line(1,0){0.15}}}
\put(0.1,0.1){0}
\put(-1.5,-3.15){$-3\iunit\ccompellintKk@@{k}$}
\put(-1.5,-2.15){$-2\iunit\ccompellintKk@@{k}$}
\put(-1.3,-1.15){$-\iunit\ccompellintKk@@{k}$}
\put(-0.9,0.85){$\iunit\ccompellintKk@@{k}$}
\put(-1.1,1.85){$2\iunit\ccompellintKk@@{k}$}
\put(-1.1,2.85){$3\iunit\ccompellintKk@@{k}$}
\put(-4.6,-0.5){$-4\compellintKk@@{k}$}
\put(-2.6,-0.5){$-2\compellintKk@@{k}$}
\put(1.8,-0.5){$2\compellintKk@@{k}$}
\put(3.8,-0.5){$4\compellintKk@@{k}$}
\end{picture}
Figure 29.2.1: z-plane: singularities ××× of Lamé’s equation. Magnify

§29.2(ii) Other Forms

29.2.2 d2wdξ2+12(1ξ+1ξ1+1ξk2)dwdξ+hk2ν(ν+1)ξ4ξ(ξ1)(ξk2)w=0,

where

29.2.3 ξ=sn2(z,k).
29.2.4 (1k2cos2ϕ)d2wdϕ2+k2cosϕsinϕdwdϕ+(hν(ν+1)k2cos2ϕ)w=0,

where

29.2.5 ϕ=12πam(z,k).

For am(z,k) see §22.16(i).

Next, let e1,e2,e3 be any real constants that satisfy e1>e2>e3 and

29.2.6 e1+e2+e3 =0,
(e2e3)/(e1e3) =k2.

(These constants are not unique.) Then with

29.2.7 g =(e1e3)h+ν(ν+1)e3,
29.2.8 η =(e1e3)1/2(ziK),

we have

29.2.9 d2wdη2+(gν(ν+1)(η))w=0,

and

29.2.10 d2wdζ2+12(1ζe1+1ζe2+1ζe3)dwdζ+gν(ν+1)ζ4(ζe1)(ζe2)(ζe3)w=0,

where

29.2.11 ζ=(η;g2,g3)=(η),

with

29.2.12 g2 =4(e2e3+e3e1+e1e2),
g3 =4e1e2e3.

For the Weierstrass function see §23.2(ii).

Equation (29.2.10) is a special case of Heun’s equation (31.2.1).