This repository accompanies the article:
Unified Slice Regularity on Clifford Algebras: A Geometric and Operator-Theoretic Framework
by Mirco A. Mannucci
📄 Read the article here ←
CliffordLab is a lightweight laboratory for experimenting with unified slice regularity on real Clifford algebras ( \mathrm{Cl}(p,q) ).
It supports:
- Minimal pure-Python Clifford algebra engine (no deps)
- Unified slice utilities for ( J^2 = \pm 1 ) (elliptic & hyperbolic)
- Numerical Cauchy-type reconstruction
- Symbolic CR checks (via SymPy)
- Optional backend using pygae/clifford
CliffordLab/
├── README.md # This file
├── LICENSE # MIT License
├── logo.svg # Project logo
├── pyproject.toml # Package metadata (to be added)
├── requirements.txt # Minimal dependencies
├── requirements-dev.txt # Dev/test dependencies
├── src/
│ └── cliffordlab/
│ ├── __init__.py
│ ├── core.py # Pure-Python GA & slice tools
│ ├── sym.py # Symbolic (SymPy) helpers
│ ├── pygae.py # pygae/clifford backend
├── examples/
│ └── CliffordLab_Tutorial.ipynb # Jupyter tutorial
├── tests/
│ └── test_cr_conditions.py # Unit tests for CR conditions
└── .github/
└── workflows/
└── ci.yml # GitHub Actions CI pipeline
git clone https://github.com/Mircus/CliffordLab.git
cd CliffordLabpython3 -m venv .venv
source .venv/bin/activateMinimal (pure-Python):
pip install -e .With SymPy and pygae/clifford:
pip install -e .[sym,pygae]Run the documented notebook:
jupyter notebook examples/CliffordLab_Tutorial.ipynbOr run the basic demo script:
python -m cliffordlab.core- Pure-Python GA core — portable, zero dependencies.
- Unified slice regularity — works for (J^2 = -1) (elliptic) and (J^2 = +1) (hyperbolic).
- Cauchy-type formula — numerically reconstruct (f(z_0)) from boundary data.
- Symbolic verification — exact CR checks with SymPy.
- pygae/clifford integration — optional high-performance backend.
Run tests:
pytestRun lint:
ruff check srcCliffordLab incorporates ideas from the theory of slice regularity in quaternionic and Clifford analysis, and extensions to unified slice regularity for mixed signature algebras.