Thanks to visit codestin.com
Credit goes to github.com

Skip to content

legacy converter #2

@mdsumner

Description

@mdsumner

Here's a brute force tidyfication of SGAT output

library(SGAT)

library(rworldmap)
library(rgdal)
library(rgeos)
prj <- "+proj=omerc +lonc=165 +lat_0=-22 +alpha=23 +k=0.99984 +x_0=0 +y_0=0 +no_uoff +gamma=23 +ellps=WGS84 +units=m +no_defs"
llprj <-  "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0"

dp <- "."
fs <- list.files(dp, full.names = TRUE, pattern = "RData", ignore.case = TRUE)
library(tibble)
library(dplyr)
## 
as_table_raster <- function(x) {
  tibble(value = values(x), cell = seq(ncell(x))) %>% dplyr::filter(!is.na(value) & value > 0)
}
as_table_Pimage <- function(x) {
  dplyr::bind_rows(lapply(seq_along(x), function(i) as_table_raster(x[i]) %>% mutate(gmt = as.POSIXct(x)[i])))
}
master <- raster(extent(-16800000, 12500000, -20300000, 19200000), res = 50000, crs = prj)

## loop over all files and save as table
for (j in seq_along(fs)) {
  load(fs[j]); 
  label <- gsub(".rdata", "", tolower(basename(fs[j]))
                tab <-   as_table_Pimage(Pimage(fit, grid = master)) %>% mutate(id = label)
                writeRDStab, file.path(".", sprintf("%s.rds", label)), compress = "xz")
})

allcells <- as_table_Pimage(im)

It needs

  • add to SQLite database rather than a list
  • remove wasted pixels in as_table_raster by resurrecting the sparse cell stuff in tripEstimation (or SGAT?)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions