-
Notifications
You must be signed in to change notification settings - Fork 33
Open
Labels
Description
USEEIO/import_factors_exio/useeio_imports_script.py
Lines 208 to 220 in c4eb170
| t_df = get_tiva_data(year) | |
| corr = (pd.read_csv(conPath / 'bea_imports_corr.csv', | |
| usecols=['BEA Imports', 'BEA Summary']) | |
| .drop_duplicates()) | |
| # ^^ requires mapping of import codes to summary codes. These codes are | |
| # between detail and summary. | |
| t_c = (t_df | |
| .reset_index() | |
| .rename(columns={'IOCode': 'BEA Imports'}) | |
| .merge(corr, on='BEA Imports', how='left', validate='one_to_many') | |
| .drop(columns='BEA Imports') | |
| .groupby('BEA Summary').agg('sum')) |
There are significant imports of Other goods and some of Used goods (see rows from t_df from 2012 these are in million current USD)
| IOCode | CA | CN | EU | JP | MX | APAC | ROW |
|---|---|---|---|---|---|---|---|
| Used | 2907 | 325 | 1456 | 179 | 713 | 360 | 578 |
| Other | 7766 | 3381 | 55516 | 12738 | 5021 | 15549 | 20653 |
but they get dropped after this merge because they are not in the concordance.
These would account for substantial embodied emissions and need to be handled.