Thanks to visit codestin.com
Credit goes to github.com

Skip to content

WeeXee/bidsMReye

 
 

Repository files navigation

Test demo Test and coverage codecov Documentation Status https://github.com/psf/black

bidsMReye

BIDS app using deepMReye to decode eye motion for fMRI time series data.

To be used on preprocessed BIDS derivatives (like those from fMRIprep), to predict eye movements from the bold data when no eye movement data are available.

By default it uses the deepMReye pre-trained "fixation" model.

The first part of the pipeline can however be used to extract data, irrespective of the presence of eye movement labels and could thus be usefull to share anonimysed subject data to the deepMReye dev team to allow them to improve their pre-trained models.

Install

Clone this repository.

git clone git://github.com/cpp-lln-lab/bidsmreye

Then install it.

cd bidsMReye
pip install .

Demo

For Linux or MacOS you use make to run all the different steps of the demo.

make demo

For Windows you will have to download the data and the pre-trained weights manually.

├── models
│   └── dataset1_guided_fixations.h5
└── tests
    └── data
        └── moae_fmriprep
             ├── logs
             └── sub-01
                 ├── anat
                 ├── figures
                 └── func

Running the different steps of the demo:

bids_dir="$PWD/tests/data/moae_fmriprep "
output_dir="$PWD/outputs "

bidsmreye --space MNI152NLin6Asym \
                --task auditory \
                --action prepare \
                $bids_dir \
                $output_dir

bidsmreye --space MNI152NLin6Asym \
                --task auditory \
                --action combine \
                $bids_dir \
                $output_dir

bidsmreye --space MNI152NLin6Asym \
                --task auditory \
                --action generalize \
                --model guided_fixations \
                $bids_dir \
                $output_dir

About

No description, website, or topics provided.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 76.7%
  • Makefile 12.7%
  • Dockerfile 10.3%
  • Shell 0.3%