Thanks to visit codestin.com
Credit goes to github.com

Skip to content

missing batch_size error inconsistent with torch docs, batch_sampler arg #421

@tdhock

Description

@tdhock

?torch::dataloader says

batch_sampler: (Sampler, optional): like sampler, but returns a batch
          of indices at a time. Mutually exclusive with ‘batch_size’,
          ‘shuffle’, sampler, and ‘drop_last’. Custom samplers can be
          created with sampler().

So batch_size should not be provided at the same time at batch_sampler.
However that contradicts the error message I get from mlr3torch when I run the code below:

batch_sampler_class <- torch::sampler(
  "BatchSampler",
  initialize = function(data_source) {
    self$data_source <- data_source
  },
  .iter = function() {
    batch_size <- 2
    indices <- 1:self$.length()
    batch_vec <- (indices-1) %/% batch_size
    batch_list <- rev(split(indices, batch_vec))
    count <- 0L
    function() {
      if (count < length(batch_list)) {
        count <<- count + 1L
        return(batch_list[[count]])
      }
      coro::exhausted()
    }
  },
  .length = function() {
    length(self$data_source)
  }
)
sonar_task <- mlr3::tsk("sonar")
sonar_ingress <- list(feat=mlr3torch::TorchIngressToken(
  features=sonar_task$col_roles$feature,
  batchgetter=mlr3torch::batchgetter_num))
target_batchgetter <- function(data){
  browser()
  torch::torch_tensor()
}
sonar_dataset <- mlr3torch::task_dataset(sonar_task, sonar_ingress, target_batchgetter)
batch_sampler_instance <- batch_sampler_class(sonar_dataset)
inst_learner <- mlr3torch::LearnerTorchMLP$new(task_type="classif")
inst_learner$param_set$set_values(
  epochs=10,
  batch_sampler=batch_sampler_class)
inst_learner$train(sonar_task)

In the code above I specified batch_sampler but I get the error message below:

> inst_learner$train(sonar_task)
Erreur dans .__ParamSet__get_values(self = self, private = private, super = super,  : 
  Missing required parameters: batch_size

The error message says I need to add batch_size parameter, but that contradicts the documentation in torch. @sebffischer Can this error message be removed please? It would be much less confusing for users if error messages in mlr3torch were consistent with the documented behavior in torch.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions