mcp-audio is an AIO-2030 compliant MCP plugin that performs voice-to-text transcription using the Audio speech recognition API.
It exposes the identify_voice method via both multipart/form-data and base64 formats, supports the AIO tools.call protocol, and returns JSON-RPC structured outputs.
- Fully AIO-compliant MCP plugin (
/tools.call,/help) - Converts
.wav/.mp3audio files to transcripts using SiliconFlow - API key managed securely via
.envfile - Docker-compatible and minimal dependencies
- Registration-ready for AIO endpoint registry
git clone [email protected]:AIO-2030/mcp-audio.git
cd mcp-audio
python -m venv venv && source venv/bin/activate
pip install -r requirements.txtcp .env.example .envSet your audio URL and API key:
AUDIO_URL=https--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
python src/mcp_server.pydocker build -t mcp-audio .
docker run --env-file .env -p 8080:8080 mcp-audioUpload audio file directly. Response:
{
"transcript": "hello world",
"confidence": 0.91,
"audio_hash": "a1b2c3..."
}JSON-RPC format with base64-encoded audio. Response:
{
"method": "tools.call",
"params": {
"method": "identify_voice",
"inputs": [
{
"type": "audio",
"value": "<base64-audio>"
}
]
}
}Auto-serves contents of mcp_audio_registration.json. Used by Queen AI for MCP discovery and service indexing.
python test/test_audio_base64.pypython health_check.py./register_mcp.shRequires jq, dfx, and a running endpoint_registry canister.