🔥 Deep learning for Ruby, powered by LibTorch
Also check out:
- TorchVision for computer vision tasks
- TorchText for text and NLP tasks
- TorchAudio for audio tasks
- TorchRec for recommendation systems
- TorchData for data loading
As well as:
- Transformers for transformers
- Safetensors for storing tensors
First, download LibTorch. For Mac arm64, use:
curl -L https://download.pytorch.org/libtorch/cpu/libtorch-macos-arm64-2.9.0.zip > libtorch.zip
unzip -q libtorch.zipFor Linux x86-64, use the build that matches your CUDA version. For other platforms, build LibTorch from source.
Then run:
bundle config build.torch-rb --with-torch-dir=/path/to/libtorchAnd add this line to your application’s Gemfile:
gem "torch-rb"It can take 5-10 minutes to compile the extension. Windows is not currently supported.
A good place to start is Deep Learning with Torch.rb: A 60 Minute Blitz.
- Image classification with MNIST (日本語版)
- Collaborative filtering with MovieLens
- Generative adversarial networks
This library follows the PyTorch API. There are a few changes to make it more Ruby-like:
- Methods that perform in-place modifications end with !instead of_(add!instead ofadd_)
- Methods that return booleans use ?instead ofis_(tensor?instead ofis_tensor)
- Numo is used instead of NumPy (x.numoinstead ofx.numpy())
You can follow PyTorch tutorials and convert the code to Ruby in many cases. Feel free to open an issue if you run into problems.
Some examples below are from Deep Learning with PyTorch: A 60 Minutes Blitz
Create a tensor from a Ruby array
x = Torch.tensor([[1, 2, 3], [4, 5, 6]])Get the shape of a tensor
x.shapeThere are many functions to create tensors, like
a = Torch.rand(3)
b = Torch.zeros(2, 3)Each tensor has four properties
- dtype- the data type -- :uint8,- :int8,- :int16,- :int32,- :int64,- :float32,- :float64, or- :bool
- layout-- :strided(dense) or- :sparse
- device- the compute device, like CPU or GPU
- requires_grad- whether or not to record gradients
You can specify properties when creating a tensor
Torch.rand(2, 3, dtype: :float64, layout: :strided, device: "cpu", requires_grad: true)Create a tensor
x = Torch.tensor([10, 20, 30])Add
x + 5 # tensor([15, 25, 35])Subtract
x - 5 # tensor([5, 15, 25])Multiply
x * 5 # tensor([50, 100, 150])Divide
x / 5 # tensor([2, 4, 6])Get the remainder
x % 3 # tensor([1, 2, 0])Raise to a power
x**2 # tensor([100, 400, 900])Perform operations with other tensors
y = Torch.tensor([1, 2, 3])
x + y # tensor([11, 22, 33])Perform operations in-place
x.add!(5)
x # tensor([15, 25, 35])You can also specify an output tensor
result = Torch.empty(3)
Torch.add(x, y, out: result)
result # tensor([15, 25, 35])Convert a tensor to a Numo array
a = Torch.ones(5)
a.numoConvert a Numo array to a tensor
b = Numo::NArray.cast([1, 2, 3])
Torch.from_numo(b)Create a tensor with requires_grad: true
x = Torch.ones(2, 2, requires_grad: true)Perform operations
y = x + 2
z = y * y * 3
out = z.meanBackprop
out.backwardGet gradients
x.grad # tensor([[4.5, 4.5], [4.5, 4.5]])Stop autograd from tracking history
x.requires_grad # true
(x**2).requires_grad # true
Torch.no_grad do
  (x**2).requires_grad # false
endDefine a neural network
class MyNet < Torch::NN::Module
  def initialize
    super()
    @conv1 = Torch::NN::Conv2d.new(1, 6, 3)
    @conv2 = Torch::NN::Conv2d.new(6, 16, 3)
    @fc1 = Torch::NN::Linear.new(16 * 6 * 6, 120)
    @fc2 = Torch::NN::Linear.new(120, 84)
    @fc3 = Torch::NN::Linear.new(84, 10)
  end
  def forward(x)
    x = Torch::NN::F.max_pool2d(Torch::NN::F.relu(@conv1.call(x)), [2, 2])
    x = Torch::NN::F.max_pool2d(Torch::NN::F.relu(@conv2.call(x)), 2)
    x = Torch.flatten(x, 1)
    x = Torch::NN::F.relu(@fc1.call(x))
    x = Torch::NN::F.relu(@fc2.call(x))
    @fc3.call(x)
  end
endCreate an instance of it
net = MyNet.new
input = Torch.randn(1, 1, 32, 32)
net.call(input)Get trainable parameters
net.parametersZero the gradient buffers and backprop with random gradients
net.zero_grad
out.backward(Torch.randn(1, 10))Define a loss function
output = net.call(input)
target = Torch.randn(10)
target = target.view(1, -1)
criterion = Torch::NN::MSELoss.new
loss = criterion.call(output, target)Backprop
net.zero_grad
p net.conv1.bias.grad
loss.backward
p net.conv1.bias.gradUpdate the weights
learning_rate = 0.01
net.parameters.each do |f|
  f.data.sub!(f.grad.data * learning_rate)
endUse an optimizer
optimizer = Torch::Optim::SGD.new(net.parameters, lr: 0.01)
optimizer.zero_grad
output = net.call(input)
loss = criterion.call(output, target)
loss.backward
optimizer.stepSave a model
Torch.save(net.state_dict, "net.pth")Load a model
net = MyNet.new
net.load_state_dict(Torch.load("net.pth"))
net.evalWhen saving a model in Python to load in Ruby, convert parameters to tensors (due to outstanding bugs in LibTorch)
state_dict = {k: v.data if isinstance(v, torch.nn.Parameter) else v for k, v in state_dict.items()}
torch.save(state_dict, "net.pth")Here’s a list of functions to create tensors (descriptions from the C++ docs):
- 
arangereturns a tensor with a sequence of integersTorch.arange(3) # tensor([0, 1, 2]) 
- 
emptyreturns a tensor with uninitialized valuesTorch.empty(3) # tensor([7.0054e-45, 0.0000e+00, 0.0000e+00]) 
- 
eyereturns an identity matrixTorch.eye(2) # tensor([[1, 0], [0, 1]]) 
- 
fullreturns a tensor filled with a single valueTorch.full([3], 5) # tensor([5, 5, 5]) 
- 
linspacereturns a tensor with values linearly spaced in some intervalTorch.linspace(0, 10, 5) # tensor([0, 5, 10]) 
- 
logspacereturns a tensor with values logarithmically spaced in some intervalTorch.logspace(0, 10, 5) # tensor([1, 1e5, 1e10]) 
- 
onesreturns a tensor filled with all onesTorch.ones(3) # tensor([1, 1, 1]) 
- 
randreturns a tensor filled with values drawn from a uniform distribution on [0, 1)Torch.rand(3) # tensor([0.5444, 0.8799, 0.5571]) 
- 
randintreturns a tensor with integers randomly drawn from an intervalTorch.randint(1, 10, [3]) # tensor([7, 6, 4]) 
- 
randnreturns a tensor filled with values drawn from a unit normal distributionTorch.randn(3) # tensor([-0.7147, 0.6614, 1.1453]) 
- 
randpermreturns a tensor filled with a random permutation of integers in some intervalTorch.randperm(3) # tensor([2, 0, 1]) 
- 
zerosreturns a tensor filled with all zerosTorch.zeros(3) # tensor([0, 0, 0]) 
Here’s the list of compatible versions.
| Torch.rb | LibTorch | 
|---|---|
| 0.22.x | 2.9.x | 
| 0.21.x | 2.8.x | 
| 0.20.x | 2.7.x | 
| 0.19.x | 2.6.x | 
| 0.18.x | 2.5.x | 
Deep learning is significantly faster on a GPU.
With Linux, install CUDA and cuDNN and reinstall the gem.
Check if CUDA is available
Torch::CUDA.available?Move a neural network to a GPU
net.cudaIf you don’t have a GPU that supports CUDA, we recommend using a cloud service. Paperspace has a great free plan. We’ve put together a Docker image to make it easy to get started. On Paperspace, create a notebook with a custom container. Under advanced options, set the container name to:
ankane/ml-stack:torch-gpu
And leave the other fields in that section blank. Once the notebook is running, you can run the MNIST example.
With Apple silicon, check if Metal Performance Shaders (MPS) is available
Torch::Backends::MPS.available?Move a neural network to a GPU
device = Torch.device("mps")
net.to(device)View the changelog
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- Report bugs
- Fix bugs and submit pull requests
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
git clone https://github.com/ankane/torch.rb.git
cd torch.rb
bundle install
bundle exec rake compile -- --with-torch-dir=/path/to/libtorch
bundle exec rake testYou can use this script to test on GPUs with the AWS Deep Learning Base AMI (Ubuntu 18.04).
Here are some good resources for contributors: